15÷5=3(组)
16÷5=3(组)……1(盆)
17÷5=3(组)……2(盆)
18÷5=3(组)……3(盆)
19÷5=3(组)……4(盆)
20÷5=□(组)
21÷5= □(组)……□(盆)
22÷5= □(组)……□(盆)
23÷5=
24÷5=
25÷5=
在这组式子的右边,提了一个问题:“观察余数和除数,你发现了什么?”旨在引导学生发现“余数小于除数”的结论。
此题编得不错,无须大改。关键是要增加一段文字,要告诉学生:“15÷5=3(组)”也可写作“15÷5=3(组)……0(盆)”。这样,展现在学生面前的余数就有0,1,2,3,4五种,就不会由于余数0的隐匿,而使学生误认为“一个整数除以5,只有1,2,3,4四种余数”了。
到四年级学习了“用字母表示数”后,课本还应当用更具概括性的语言告诉学生:在整数除法中,如果除数是a,则余数只能是0,1,2,…,a-1,一共有a种。
当今时代,数学不仅作为工具,发挥着越来越重要的作用,而且,数学作为一种文化,也日益深入人心。近年来,人们对0的双重意义的认识越来越到位了。这不,没有距离被称作“零距离”;不收关税被称作“零关税”。把没有误差称作“零误差”;把没有风险称为“零风险”。而像“零增长” “零收益” “零亏损” “零排放” “零损耗” “零学费” “零片酬”“零首付”“零月租”“零利息”之类的提法早已见诸各媒体。随着时间的推移,像这类以“零××”为模式的词汇还在不断地诞生。前些时候,美国国务卿希拉里·克林顿由于不满下属的荒唐行为,还首创了“零忍耐”一词,令人颇感新鲜。
“0”本是数学中的元素,在数学的整数除法中,又实实在在地存在着余数为0的现象,而为什么在我们的小学数学教科书上,反倒连一个“零余数”都不敢提呢?这真是:墙外百花齐放,墙内掖掖藏藏。令人不解其意,空自扼腕嗟伤!
教科书是师生进行教学活动的重要资源和主要依据,该说清的一定要说清,该指明的一定要指明。一切都要为学生的发展着想。千万别把一些该让孩子们知道的数学知识“坚壁清野”,而且还藏得那么干净彻底,藏得那么了无痕迹,让教师都困扰莫名。试想,如果教科书都让教师 “找不到北”了,那么我们的孩子又能聪明到哪里去呢?