“通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。”对于探究“把4枝铅笔放有3个文具盒中不管怎么放,总有一个文具盒里至少放进2枝铅笔。”是否正确,我引导学生用了枚举法、数字符号描述法、假设法层层深入进行讨论。通过观察、操作、归纳、类比、推断等数学活动总结得知:前两种属列举法,都是把各种可能出现的情况一一列举出来。但层次不一样,枚举法具体、可操作性强,但数学内涵揭示不明显,学生不容易发现数学问题。数字符号描述法较枚举法高级,能简洁、清晰地把数学过程展现在眼前。枚举法和数字符号描述法有共同的缺陷,就是当数据较大时,列举过程耗时低效,正确率低。假设法就能避免此不足。假设法是比较抽象的逻辑推理过程,只需借助符号、算式把抽象的原理具体化,便能把抽象的知识化为通俗易懂,掌握起来快捷有效。三种方法既具探索性,又具挑战性,学生多法而作,优势互补,相得益彰,个个都能感受数学思考过程的条理性和数学结论的确定性。既彰显了学生个性化学习,又发展了学生择优提升学习技巧的能力;既能让学生深刻理解假设法的内涵,又能使学生体验到从不同角度采用多种方法探究数学问题的乐趣。
四、引导学生抽象概括,发展学生的建模应用能力
《数学课程标准》倡导“综合运用所学的知识和技能解决问题,发展学生的应用意识和实践能力”。从解决“抽屉原理”一般方法中抽象概括,总结出通用原理,加以推广运用,是本课的主要目标之一。在本节课中,我引导学生进行了三次抽象概括。第一次抽象:引导学生用字母代替数。我问大家:“怎样用字母代替数呢?”生1忽闪着明亮的眼睛说:“我用a和n代替,把a枝铅笔放进n个文具盒中,保证a﹥n,a和n是正整数,就能得出总有一个文具盒里至少放有2枝铅笔”这个结论。为了进一步内化“抽屉原理”的本质属性,我引导学生进行第二次抽象:揭示命题。我出示“7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里”,问学生打算用什么方法验证?学生都选择了用除法算式假设法验证,说:“7÷5=1……2, 1+1=2,就是至少2只,”图示为:
11111
11
引导学生概括:我们把这一个一个的方框看做一个一个的抽屉。刚才4枝铅笔和7只鸽子都是被分的物体,3个文具盒和5个鸽舍都把它看做抽屉,因此可以总结为“把a个物体放进n个抽屉中(a﹥n,a和n是正整数),总有一个抽屉里至少放进2个物体。”我们把这个原理称作“抽屉原理”。第三次抽象:揭示规律。我继续引导:如果研究把5本、7本、9本书放有2个抽屉中,不管怎么放,总有一个抽屉至少放有(3、4、5)本书?学生个个跃跃欲试,分别表示为:5÷2=2……1, 2+1=3;7÷2=3……1, 3+1=4;9÷2=4……1, 4+1=5。在学生的讨论、归纳中得出规律:“把a个物体放进n个抽屉中,若a÷n=k……b(a、n、k、b为正整数,则总有一个抽屉里至少放进(k+1)个物体,因为物体和抽屉总是一个一个的)。这时,学生的思维被完全激发,学习热情被充分调动总结出完整的“抽屉原理”数学模型,并被灵活应用。