您当前所在位置:

浅谈常存杂质对钢性能的影响

2012-09-29

耐磨钢是指在强烈冲击载荷作用下才能发生硬化的高锰钢。它只有在强烈冲击与摩擦的作用下,才具有耐磨性,在一般机器工作条件下,它并不耐磨。主要用于制造坦克、拖拉机的履带,挖掘机铲斗的斗齿以及防弹钢板、保险箱钢板、铁路道岔等。由于高锰钢极易加工硬化,使切削加工困难,故大多数高锰钢零件是采用铸造成型的。

渗碳体概念

渗碳体的分子式为fe3c,它是一种具有复杂晶格结构的间隙化合物。

它的含碳量为6.69%;熔点为1227℃左右;不发生同素异晶转变;但有磁性转变,它在230℃以下具有弱铁磁性,而在230℃以上则失去铁磁性;其硬度很高(相当于hb800),而塑性和冲击韧性几乎等于零,脆性极大。

渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。

渗碳体是碳钢中主要的强化相,它的形状与分布对钢的性能有很大的影响。同时fe3c又是一种介(亚)稳定相,在一定条件下会发生分解。

钢的氮化(气体氮化)

概念:氮化是向钢的表面层渗入氮原子的过程,其目的是提高表面硬度和耐磨性,以及提高疲劳强度和抗腐蚀性。它是利用氨气在加热时分解出活性氮原子,被钢吸收后在其表面形成氮化层,同时向心部扩散。

氮化通常利用专门设备或井式渗碳炉来进行适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主),高速柴油机曲轴、阀门等。

氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能和氮化层质量。钢在氮化后,不再需要进行淬火便具有很高的表面硬度(大于hv850)及耐磨性。氮化处理温度低,变形很小,它与渗碳、感应表面淬火相比,变形小得多钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程,习惯上碳氮共渗又称作氰化。目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较是广泛。中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度,低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。

金属特性及金属键的概念

金属为何具有其特性和金属键的概述

晶体分为金属晶体与非金属晶体,两者在内部结构与性能上除有着晶体所共有的特征外,金属晶体还具有它独特的性能,如具有金属光泽以及良好的导电性、导热性和塑性。但金属与非金属的根本区别是金属的电阻随着温度的升高而增大,即金属具有正的电阻温度系数,而非金属的电阻却随着温度的升高而降低,即具有负的温度系数。

金属为何具有上述这些特性呢?这主要是与金属原子的内部结构以及原子间的结合方式有关。

金属元素原子构造的共同特点,就是它的最外层电子(价电子)的数目少(一般仅有1-2个),而且它们与原子核的结合力弱,很容易摆脱原子核的束缚而变成自由电子。当大量的金属原子聚合在一起构成金属晶体时,绝大部分金属原子都将失去其价电子而变成正离子,正离子又按一定几何形式规则地排列起来,并在固定的位置上作高频率的热振动。而脱离了原子束缚的那些价电子都以自由电子的形式,在各离子间自由运动,它们为整个金属所共有,形成所谓“电子气”。金属晶体就是依靠各正离子与公有的自由电子间的相互引力而结合起来的,而离子与离子间以及电子与电子间的斥力则与这种引力相平衡,使金属处于稳定的晶体状态。金属原子的这种结合方式称为“金属键”。

由于金属晶体是金属键结合,因而使金属具有上述一系列的金属特性。例如:金属中的自由电子在外电场作用下会沿着电场方向作定向运动,形成电流,从而显示良好的导电性。而靠离子键或共价键结合的非金属晶体,由于没有自由电子存在,故无这种特性。又如:因金属中正离子是以某一固定位置为中心作热振动的,对自由电子的流通就有阻碍作用,这就是金属具有电阻的原因。随着温度的升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,因而金属的电阻是随着温度的升高而增大的,即具有正的电阻温度系数。此外,由于自由电子的运动和正离子振动可以传递热能,因而使金属具有较好的导热性。当金属发生塑性变形(即晶体中原子发生了相对位移)后,正离子与自由电子间仍能保持金属键的结合,使金属显示出良好的塑性。因为金属晶体中的自由电子能吸收可见光的能量,故使金属具有不透明性。吸收能量而跳到较高能级的电子,当它重新跳回到原来低能级时,就把所吸收的可见光的能量以电磁波的形式辐射出来,在宏观上就表现为金属的光泽。

威廉希尔app  化学论文栏目