编辑:
2013-11-29
二、现代概率归纳逻辑
现代概率归纳逻辑始于20世纪20年代,逻辑学家凯恩斯 、尼科(Nicod)及卡尔纳普和莱欣巴赫(Reichenbach)等人,采用不同的确定基本概率的原则及对概率的不同解释,形成不同的概率归纳逻辑学派。
凯恩斯将概率与逻辑相结合,认为归纳有效度和合理性的本质是一个逻辑问题,而不是经验的或形而上学的问题。他提出了“概率关系”的概念:假设任一命题集合组成前提h,任一命题集合组成结论a,若由知识 h证实a的合理逻辑信度为α,我们称a和h间的“概率关系”的量度为α,记作a/h=α。并着眼于构造两个命题间的逻辑关系的合理体系,但未取得成功。而且他认为,大多数概率关系不可测,许多概率关系不可比较。但他在推进归纳逻辑与概率理论的结合上,作出了历史性的贡献,是现代归纳逻辑的一位“开路先锋”。
逻辑主义的概率归纳逻辑的代表卡尔纳普,在20世纪50年代提出概率逻辑系统,这一体系宣告了归纳逻辑的演绎化、形式化和定量化,将概率归纳逻辑推向了“顶峰”。卡尔纳普认为休谟说的归纳困难并不存在,归纳也是逻辑,并且也有像演绎一样的严格规则。施坦格缪勒(Stegmuller)指出:“ 2500年前,亚里士多德开始把正确的演绎推理的规则昭示世人,同样,卡尔纳普现在以精确表述归纳推理的规则为己任。”[2]演绎的逻辑基础在于它的分析性,所以,从维特根斯坦和魏斯曼(Waismann)就开始致力于把它改造为逻辑的概率概念,以使概率归纳成为分析性的。卡尔纳普完成了这一发展。他说:“我的思想的信条之一是,逻辑的概率概念是一切归纳推理的基础……因此,我称逻辑概率理论为‘归纳逻辑’。”[3]他并把此概念直接发展为科学的推理工具:“我相信,逻辑概率概念应当为经验科学方法论的基本概念,即一个假说为一给定证据所确证的概念提供一个精确的定量刻画。因此,我选用‘确证度’这个术语作为逻辑概率刻画的专门术语。”[3]与凯恩斯一样,卡尔纳普把概率1解释作句子e 和 h间的逻辑关系,表达式是c(h,e)=r,读作“证据e对假说h的逻辑确证度是r”。这样,归纳便是分析性的了,演绎推理是完全蕴涵,归纳推理是部分蕴涵,即归纳是演绎的一种特例。此外,卡尔纳普所想要的归纳逻辑还是定量的,他希望最终找到足够多的明确而可行的规则,使C(e,h)的计算成为只是一种机械的操作,以将他与凯恩斯严格区分开来。
20世纪30年代,莱欣巴赫建立了他的概率逻辑体系,被称为经验主义的概率归纳逻辑。他用频率说把概率定义为,重复事件在长趋势中发生的相对频率的极限。这种方法简单实用,但却带来两方面的困难。首先,上述极限定义是对于无数次重复事件的概率而言的。那如何找出一种测定假说真假的相对频率的方法呢?其次,对单一事件或单一假说怎么处理呢?所以频率说只适用于经验事件的概率,其合理性的辩护非常困难。它所面临的最大困难就是找不到由频率极限过渡到单个事件概率的适当途径。为此,莱欣巴赫建议把“概率”概念推广到虚拟的、平均化的“单个”事件,引进了单个事件的“权重(Weight)”概念,试图把理想化的单个事件的概率或“权重”事先约定与对应的同质事件的无限序列的极限频率视作同一。但这与他的初衷相背,频率论者不得不由原先主张的客观概率转向主观概率了。
对概率的前两种解释都着眼于概率的客观量度,然而对随机事件的概率预测离不开主观的信念与期望。主观主义概率归纳逻辑发端于20世纪30年代,创始人是拉姆齐(F.P.Ramsey)和菲尼蒂(De Finetti)。它将概率解释为“合理相信程度”或“主体x对事件A的发生,或假说被证实的相信程度。”表明,如果按贝叶斯公理不断修正验前概率,那么无论验前概率怎样,验后概率将趋于一致;这样,验前概率的主观性和任意性就无关紧要了,因为它们终将淹没在验后概率的客观性和确定性之中。一个人对被检验假设的验前概率是由他当时的背景知识决定的。
主观概率充分注意到推理的个人意见及心理对于概率评价的相关性,意义重大。但是,人们在做出置信函项时,除了“一贯性”的较弱限制外,很难在多种合理置信函项间作出比较和选择。
标签:逻辑学论文
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。