编辑:
2015-12-11
我们将股市指数收益率Rt定义为股票指数的对数的一阶差分:Rt=ln(Pt)-ln(Pt-1),其中Pt是股票指数价格。当股票指数波动不是十分剧烈的时候,它近似等于股票指数的日收益率,对应着股票市场的整体收益水平。
许多的学者研究结果倾向表明中国股市处于弱有效形式。因此,本文对股票指数收益率序列Rt、股票指数绝对日收益率序列|Rt|、日均方收益率序列R2t的变化情况进行考察。当样本容量比较大的时候,根据大数定理与市场弱型有效,可知样本区间的整体收益率均值为:Rt=Rt≈0,其中T是样本容量。假设εt表示沪深两市A股指数日收益率与样本均值的偏离,则有εt=Rt-Rt≈Rt,εt=Rt-≈Rt,ε2t=(Rt-Rt)2≈R2t。
因此,沪深两市A股指数日收益率Rt、日绝对收益率Rt、日均方收益率R2t分别表示股指收益率分别围绕均值的双向变动,绝对变动,均方波动,他们体现了波动性逐渐增强的特点。
二、模型的建立
通过对沪深股市价格指数和收益率作单位根检验,Granger因果关系检验和协整检验,我们发现:(1)沪指和深指对数序列均为一阶单整I(1),指数收益率序列为平稳序列;(2)上海股票市场指数是深圳股市指数的Granger原因,但反之不成立;(3)沪深股指之间存在着协整关系(检验结果在附录)。基于检验结果,本文可以建立以下模型:
(一)误差修正模型
通过平稳检验,可以对沪深股指的收益率序列间建立误差修正模型,结果
Rsht=0.7884Rszt+0.0957Rsh t-1+0.0288Rsh t-2-0.0974Rsz t-1-0.0787Rsz t-2-
0.0006+εsh t
(41.6471) (1.9558) (0.58988) (-2.26068) (-1.82970)
(-1.15173)
Rszt=01.0273Rsht+0.1121Rsz t-1+0.0577Rsz t-2-0.1128Rsht-1-0.0191Rsht-2-
0.0002+εsz t
(41.6471)(2.2821)(1.1734)(-2.02089)(-0.34466)
(-0.46366) (1)
其中,sh表示上海综指,sz表示深圳综指,t表示时间,t-1表示t期滞后一阶。根据上述误差修正方程计算,如果仍然引入非显着的回归项,那么求解收益率序列的无条件数学期望,可以得到两市收益率水平分别为:=0.00371,=0.00428。可见两市的长期收益率有显着差异。两市收益率均受到长期均衡关系的显着影响,但是修正项对沪深股市收益率是负的边际贡献。在ECM模型中,存在沪深两市股票价格收益率的交互影响,因为滞后系数出现部分显着与不显着,体现了短期波动之间的相互影响。
因此,ECM模型表明,沪深两市股票收益率之间存在长期的协整趋势,但是它们的短期波动过程存在着相异的波动模式。
(二)GARCH模型和溢出效应模型的估计与检验
我们采用GARCH模型检验收益率序列的条件异方差性,首先利用偏自相关函数(PACF)和自相关函数(ACF)决定均值方程中的AR过程与MA过程的阶数,然后根据绝对残差序列的特性,然后确定方差方程中的ARCH 项和GARCH项的阶数。在经过不断试错的情况下,GARCH(1,1)都能比较好地进行解释,其SC和AIC值也比较小。
沪深市场的GARCH-M模型和溢出效应模型估计(括号中为Z统计量值):
Rsht=0.1789Rsht-0.0597Rsh t-1+ε t
(3.338219) (1.15366)(2)
hsht=0.0000105-0.08(εsht-1)2+0.899hsht-1
(1.7415)(3.6922) (31.7933)
Rszt=0.18Rszt-0.0122Rsz t-1+ε t
(3.5721) (0.2446) (3)
hszt=0.00005-0.08(εsht-1)2+0.899hsht
(1.75)(3.66) (31.71)
编辑老师为大家整理了证券投资论文4500字,希望对大家有所帮助。更多详情请点击进入证劵金融。
标签:证券投资论文
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。