编辑:
2014-04-11
目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析后, 再作综合评估。在综合评估中所用的方法主要有: delphi法(专家法)、ahp法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。
这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以bp神经网络作为基于多因素的技术创新预测和评估模型构建的基础, bp神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。
以上是小编为您带来的公共管理硕士生的开题报告。
相关推荐:
标签:开题报告指南
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。