您当前所在位置:首页 > 论文 > 教育学论文 > 学科教育论文

分析概念教学中例题设计的常见误区

编辑:

2014-07-07

二、概念教学中例题设计的对策与原则

1.例题设计要重视教材开发

教材是众多数学家、数学教育家集体智慧的结晶,具有很强的权威性和指导性,但教材中的概念、公式、定理等多数都是以具有较强的抽象性、概括性的“学术形态”知识呈现出来,在教学中我们须钻研透教材,吃透教材中的概念、公式、定理等,并将其转化为易于学生理解的“教育形态”知识,挖掘、开发出其潜在教学功能.如:

案例4 江欣怿老师在教授“抛物线”一课时,对课本例题进行了二次开发,设计了以下例题,并收到了良好的教学效果:

题1 在一个平面内,点P与点F(2,0)的距离比它到直线x+4=0的距离小2,求点P的轨迹方程.

学生根据抛物线的定义,利用直线移动的方法,可以快速得到轨迹方程为:

=8x(x≥0).

题2 在一个平面内,点P与点F(2,0)的距离比它到直线x+1=0的距离大1,求点P的轨迹方程.

同上,可以得到轨迹方程为:

=8x(x≥0).

题3 在一个平面内,点P与点F(2,0)的距离比它到y轴的距离大2,求点P的轨迹方程。

部分学生由于思维定势,马上想到利用抛物线定义得出结论:

=8x(x≥0).

显然从图象上可以看出,x轴负半轴上的所有点也是满足条件的.所以方程有两个:

=8x(x≥0)和y=0(x<0).

其实由求轨迹的一般方法,列式

追问 题1与题2为何只一个方程?是否漏解呢?

题4 在一个平面内,点P与点F(2,0)的距离比它到直线x-1=0的距离大3,求点P的轨迹方程.

此题利用列式计算求出轨迹方程:=8x(x≥1)和=-4(x-3)(x<1)已经没有困难;在利用几何方法的过程中,移动直线的关键是为了让动点到直线的距离与到定点的距离相等,除了考虑将直线x-1=0左移三个单位,将直线右移三个单位也有轨迹是满足条件的,轨迹图象如图3,为两部分抛物线叠加的轨迹.

从课堂效果上来看,此例题的设计激发了学生极大的学习热情.通过自主探究,学生不仅对抛物线的定义有了更深刻的理解,并且对“数缺形时少直观、形缺数时难入微”的数形结合思想有了深刻认识,加强了学生以形助数,以数想形的意识.

2.例题设计要注重循序渐进

一道例题能否激发学生的兴趣,让学生积极的参与,首先取决于提出的问题能否引起学生的认识冲突、能否引起学生思想上的共鸣.每一个问题都应建立在学生已有的认识基础上,并为他们留出思考的余地.俗话说:温故而知新.学过的知识需要不断地加以应用和巩固,学习新知识时更要注意与旧知识进行呼应和比较.如:

案例5 在学习了“几何概型”概念及计算公式之后,为了突出古典概型与几何概型的比较与选择,可以设计如下例题:

题1 已知x,y∈[0,6]且x,y∈N.求事件“x-y≥3”的概率.

题2 已知x,y∈[0,6]且x,y∈R,求事件“x-y≥3”的概率.

此例题的设计重在突出新旧知识之间的联系与差别,前后呼应、循序渐进,突出了从古典概型到几何概型,是从有限到无限的延伸,原来枯燥的讲解说教被题目中这一字改动,尽在不言中了.

3.例题设计要聚焦概念核心

例题的设计要有助于概念理解,有助于概念应用,应把设计的着力点聚集在概念的核心上.通过例题的解决,达到帮助学生理解概念的本质目的.如:

案例6 讲完函数概念后可以选择这样的例题来帮助学生深化概念:

题1 表1中的数据是同学们在做水龙头验时收集的.量杯的最大容量是100毫升.

(1)如果继续试验,多少秒后量杯里的水会满而溢出?

(2)这是一次函数吗?请解释.

题2 小张和小李一起做水龙头漏水实验.他们每人将收集的数据描在了直角坐标系中,如图4所示,是什么原因导致了他们所画的图象不同?如图5,关于水龙头漏水实验数据的图象,该图象说明了什么?

这样的例题,函数味道很浓,“变量”“一个量随着一个量的变化而变化”“对应关系”“变化规律”等,都得到了充分体现.问题聚焦于概念的理解和应用,只要理解了概念就能回答,而不是给学生设置“陷阱”,在与函数概念没有太大关系的问题上制造麻烦.这类例题更有助于学生理解概念的本质,能让学生感受数学的作用,对能力的培养也更全面.

4.例题设计要渗透思想方法

例题设计要使得学生能从看似平淡的文字描述、符号推演中挖掘其内涵.领悟出其深刻的数学思想,如果只是把例题看成解题技能的示范,那么教学必然缺乏“数学味”.如:

案例7 在学习了“等差数列及其前n和公式”后,教材(人教版必修5第44页)设计了:

教材通过进行求解,并没有对例题中蕴涵的数学思想方法用文字直接加以阐述.但我们能从这样的例题设计中发现,教材的设计意图在于引导学生用函数的思想来研究数列,即从数形结合的观点出发,利用数学分类讨论的思想对进行分类得到的表达式,可以是常数(由0组成的数列),可以是n的正比例函数(如由非零常数组成的数列),可以是关于n的二次函数(图象经过原点),从而使学生发现知识间的内在联系,学会用联系的观点来学习数学.这种以思想方法为主线来串联、设计例题,即能真正发挥例题的功能与价值.我们应该充分认识例题在概念学习中的功能与价值,把握概念教学中例题设计的关键与原则,在深刻理解数学概念的基础上做到深入浅出。

以上就是我们为您准备的概念教学中例题设计的常见误区,更多内容请点击威廉希尔app 。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。