编辑:
2015-11-23
赌博游戏存在的时间之长、范围之广、形式之多令人惊讶。但有如此众多的人沉迷于这种游戏活动,也在客观上积累了大量的可供学者进行研究的随机过程。更为重要的是,
在进行赌博的过程中,或许是受到经济利益的驱使,已经开始有人试图解开骰子的奥秘。意大利数学家卡尔达诺就是其中的一位。他本人是个大赌徒,嗜赌如命,但他却具有极高的数学天分。在赌博的过程中,卡尔达诺充分发挥了他的数学才能,研究可以常胜不输的方法。据说他曾参加过这样一种赌法:把两颗骰子掷出去,以每个骰子朝上的点数之和作为赌的内容。那么,赌注下在多少点上最有利?
两个骰子朝上的面共有36 种可能,点数之和分别为2~12 共11 种,从上图可知,7 位于此六阶矩阵的对角线上,它出现的概率为6/ 36 = 1/ 6 ,大于其他点数出现的概率,因此卡尔达诺预言说押7 最好。这种思想今天看来很简单,但在当时却是很杰出的。他还以自己丰富的实践经验为基础,写成了全面探讨赌博的《机遇博奕》(Liber de Ludo Aleae 英译为The Book of Game of Chance) 一书,书中记载了他研究赌博的全部成果,并且明确指出骰子应为“诚实的”(honest) ,即六个面出现的机会相等,以便在此基础上研究掷多粒骰子的等可能结果数[2 ] 。
这些实例充分说明,赌博曾对概率论的产生起过积极的作用。这可能就是人们在谈到概率论时总是把它与赌博联系在一起的缘故吧。但是我们应该认识到,赌博的价值并不在于其作为一种游戏的娱乐作用,而在于这种机遇游戏的过程实际上就是良好的独立随机过程。只有出现了独立随机过程,概率论才有了最初的研究对象。而概率论也的确是在解决机遇游戏中出现的各种问题的基础上建立起自己的理论体系的。因此在概率论的孕育期,可以作为一种模型进行研究的机遇游戏过程即独立随机过程的出现是概率论得以产生的一个重要前提条件。
二 先进计数系统的出现
前面曾经提到,独立随机过程的出现并不是概率论诞生的决定性因素。代写职称论文 仅有概率思想而不能将概率结果表达出来,也不能形成完整的理论。概率论是一门以计算见长的数学分支,计算过程中需要运用大量的加法和乘法原理(组合数学原理) 进行纯数字运算。对于现代人来说,概率计算并不是一件难事。但是对于16 世纪以前的人来说,计算却是十分困难的,原因就在于古代缺乏简便的计数系统。当时的计数符号既繁琐又落后,书写和使用都很不方便,只能用来做简单的记录,一旦数目增大,运算复杂,这些原始的符号就尽显弊端了。而没有简便的计数符号,进行概率计算将是十分困难的事,因此计数符号是否先进也在一定程度上决定着概率论的形成。
对于这一点,现代人可能不容易体会得到,究竟古代的计数符号复杂到什么程度呢? 我们可以以古罗马的计数系统为例来说明。
古罗马的计数系统是一种现在最为人们熟悉的简单分群数系,大约形成于纪元前后。罗马人创造了一种由7 个基本符号组成的5 进与10 进的混合进制记数法,即
I V XL C D M
15 1050 100 500 1000
在表示其他数字时采取符号重复的办法,如Ⅲ表示3 ,XX表示20 ,CC表示200 等。但如果数字较大表示起来就相当复杂了,比如:1999 =MDCCCCLXXXXVIIII
后来为了简化这种复杂的表示法,罗马人又引进了减法原则,即在一个较大的单位前放一个较小单位表示两者之差,如Ⅳ表示4 ,CM表示900 ,则1999 =MCMXCIX
如果要计算235 ×4 = 940 ,现代的竖式是
而公元8 世纪时英国学者阿尔琴演算同一道题的过程则要复杂得多:古罗马数字对于这样一个既不含分数和小数,数字又很简单(只有三位数) 的乘法运算处理起来尚且如此复杂,可以想象,即使数学家有足够的时间和耐心,要解决概率计算里涉及的大量纯数字运算也是一件太耗费精力的事。在这种情况下想要作出成果,数学家们的时间不是用来研究理论而只能是忙于应付这些繁重的计算工作了。显然古罗马的计数系统并不适合于进行计算,而事实上,欧洲的代数学相比几何学而言迟迟没能发展起来,很大程度上也是由于受到这种落后的计数系统的限制。不仅仅是古罗马数字,在人类文明史上出现过的其他几种计数系统(如古埃及、古巴比伦等的计数系统) 也由于符号过于复杂,同样不能承担进行大量计算的任务。
编辑老师为大家整理了概率论毕业论文,供大家参考。更多详情点击进入毕业论文范文。
标签:毕业论文范文
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。