您当前所在位置:首页 > 论文 > 毕业论文 > 毕业论文范文

动态数据仓库的商务智能系统分析论文

编辑:sx_yangk

2015-08-06

商务智能是一套完整的解决方案,是提升决策能力的概念、工具、方法以及应用软件的一整套组合, 下面是编辑老师为大家准备的动态数据仓库的商务智能系统分析

从软件系统应用角度看是数据仓库、联机分析处理、数据挖掘等技术方法和工具在商业活动中的集中应用。其工作原理是从企业各类数据源收集数据,经过抽取(Extract)、转化(Transform)、加载(Load),送入数据仓库,使用数据查询分析工具、数据挖掘工具和联机分析处理工具对信息进行处理,并以定制的动态报表实时展示,从而将信息转变为辅助决策的知识,最终呈现给用户。商务智能软件的功能有:多维数据分析及展现、报表工具、趋势分析、可视化工具、数据挖掘等。

在满足商务智能各基本功能的前提下,企业对如何保证获取和分析数据的实时性更为关注。即:数据抽取、转换、加载、集成的实时性和分析,以对决策提供实时支持。

 

动态数据仓库是对传统数据仓库的延伸和扩展,通过动态数据加载,动态事件驱动和动态数据访问,对不同用户群体(管理层、分析师、业务员)进行分门别类的决策支持,将原来后台的商务智能推向前端,使实时商务智能[2]成为可能。

 

数据仓库作为商务智能的重要依托,是对“海量数据”、“大数据”进行分析处理的核心物理架构。借助数据仓库技术,可以将来自于不同数据源平台 (如CRM、SCM、ERP、OA以及企业外部的系统和零散数据)格式不一的数据处理成语义格式一致的多源数据进行存储。以往数据仓库很强调海量,但随着商业机会出现的周期越来越短,只有少数行业垄断企业凭借海量数据获得商业智能素材,对于大多数企业而言必须快速地掌握信息变化,即便是小量、甚至个别的信息也有商机可挖。由此可见,更快的动态数据日益成为今后的主流。相比传统数据仓库,动态数据仓库强调数据的及时性和同步,其实质是将数据仓库和一个运作数据存储结合起来,以便对数据同时更新,并从同一个中央仓库中获得时间敏感性数据和详细历史数据。

动态数据仓库关键是动态加载数据,也就是数据仓库的ETL过程。ETL是将业务系统的数据源按一定顺序进行采集,然后按照数据存储结构进行合理的转换,并将源数据中出现的二义性、重复、不完整、违反业务或逻辑规则等问题统一进行处理,最后按照数据仓库的结构进行数据加载,也就是常说得数据抽取、转化、装载。这一过程实现了多种类、多平台数据源的整合,解决数据在时间、不稳定性、依赖性等方面的差异,保证数据一致性,达到正确理解数据业务含义的目的,这也是ETL技术核心所在。数据的实时加载有多种方法,早期有短时间间隔内批量数据抽取盒利用EAI消息队列的数据传输,后有利用SOA框架和XML 统一数据格式解决数据与数据源的实时同步问题[34]。

编辑老师在此也特别为朋友们编辑整理了动态数据仓库的商务智能系统分析

相关推荐:

毕业论文范文:语文教学现状及其改进  

毕业论文范文:教学实践中的无效模式  

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。