编辑:
2011-10-26
二、"差分法"与"化同法"经常联系在一起使用,"化同法紧接差分法"与"差分法紧接
化同法"是资料分析速算当中经常遇到的两种情形。
三、"差分法"得到"差分数"与"小分数"做比较的时候,还经常需要用到"直除法"。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次"差分法",这种情况相
对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
★【速算技巧六:插值法】
要点:
"插值法"是指在计算数值或者比较数大小的时候,运用一个中间值进行"参照比较"
的速算方式,一般情况下包括两种基本形式:
一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以
进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。
比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而B
A>B。
二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以
容易的找到A与B之间的一个数C,比如说AC,则我们知道
f=B(另外一种情况类比可得)。
★【速算技巧七:凑整法】
要点:
"凑整法"是指在计算过程当中,将中间结果凑成一个"整数"(整百、整千等其它方
便计算形式的数),从而简化计算的速算方式。"凑整法"包括加/减法的凑整,也包
括乘/除法的凑整。
在资料分析的计算当中,真正意义上的完全凑成"整数"基本上是不可能的,但由于
资料分析不要求绝对的精度,所以凑成与"整数"相近的数是资料分析"凑整法"所真
正包括的主要内容。
★【速算技巧八:放缩法】
要点:
"放缩法"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果
进行大胆的"放"(扩大)或者"缩"(缩小),从而迅速得到待比较数字大小关系的
速算方式。
要点:
若A>B>0,且C>D>0,则有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中
经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考
场之上容易漏掉的数学关系,其本质可以用"放缩法"来解释。
★【速算技巧九:增长率相关速算法】
要点:
计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些
常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助
作用。
两年混合增长率公式:
如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:
r1+r2+r1× r2
增长率化除为乘近似公式:
如果第二期的值为A,增长率为r,则第一期的值A':
A'= A/(1+r)≈A×(1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为r^2)
平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:
r≈上述各个数的算术平均数
(实际上左式略小于右式,增长率越接近,误差越小)
求平均增长率时特别注意问题的表述方式,例如:
1、"从2004年到2007年的平均增长率"一般表示不包括2004年的增长率;
2、"2004、2005、2006、2007年的平均增长率"一般表示包括2004年的增长率。
"分子分母同时扩大/缩小型分数"变化趋势判定:
1、A/B中若A与B同时扩大,则①若A增长率大,则A/B扩大②若B增长率大,则A/B缩
小;A/B中若A与B同时缩小,则①若A减少得快,则A/B缩小②若B减少得快,则A/B扩
大。
2、A/(A+B)中若A与B同时扩大,则①若A增长率大,则A/(A+B)扩大②若B增长率大,
则A/(A+B)缩小;A/(A+B)中若A与B同时缩小,则①若A减少得快,则A/(A+B)缩小②
若B减少得快,则A/(A+B)扩大。
多部分平均增长率:
如果量A与量B构成总量"A+B",量A增长率为a,量B增长率为b,量"A+B"的增长率
为r,则A/B=(r-b)/(a-r),一般用"十字交叉法"来简单计算。
注意几点问题:
1、 r一定是介于a、b之间的,"十字交叉"相减的时候,一个r在前,另一个r在后;
2、 算出来的比例是未增长之前的比例,如果要计算增长之后的比例,应该在这个
比例上再乘以各自的增长率。
等速率增长结论:
如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的
数值成"等比数列",中间一项的平方等于两边两项的乘积。
标签:资料分析
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。