来源:互联网 编辑:sx_wuqb
2013-06-28
行程问题是公务员行测考试中较难的一类典型题型,也是很多学员难以突破的题型之一。而每年无论是国考、联考或是其他自主命题省份的省考,都会通过行程问题考察考生对于复杂问题的解决能力,以达到区分考生水平和层次的目的。在公务员考试中,行程问题主要包括基本公式、相遇追及、流水行船和电梯运动等问题,而相遇追及问题是考察频率最高、变化最多、入手最难的题型。近年来,相遇追及问题从一次相遇到多次相遇、从直线运动到曲线运动,比例法在解决这类问题中的作用凸显出来。特别是当题目较抽象、已知条件非常少时,方程法固然可用,但是相当复杂的情况下,能够利用比例法在短时间内找到解题的突破口,快速解答。就相遇追及问题中比例法的解题思路作简要阐述。
【例题1】甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米。问东、西两城相距多少千米?( )
A.60千米 B.75千米
C.90千米 D.135千米
【答案】B
【解析】这是一道典型的相遇追及问题。找出等量关系,列出方程求解是可行的,但会非常复杂。比例法, =6:9=2:3,则 一定时, =3:2。相遇时, 一定, =3:2。令甲走了3份距离,乙走了2份距离,多一份距离为15千米。故全程共5份距离,为75千米。
【例题2】A、B两地间有条公路,甲乙两人分别从A、B两地出发相向而行,甲先走半小时后,乙才出发,一小时后两人相遇,甲的速度是乙的2/3。问甲、乙所走的路程之比是多少?
A.5:6 B.1:1
C.6:5 D.4:3
【答案】B
【解析】这是一道非常抽象的相遇追及问题。考虑比例法,1小时后两人相遇, 一定, 故最终 =1:1。
【例题3】甲、乙两人开车同时从A、B两地出发,甲每小时行90千米,乙每小时行60千米,两人在途中C点相遇。如果甲晚出发1小时,两人将在途中D点相遇。且AB两地中点E到C、D两点的距离相等。那么A、B两点间的距离为?( )
A.72 B.108
C.150 D.180
【答案】D
【解析】这同样是一道比较复杂的相遇追及问题。考虑比例法,时间一定, = =90:60=3:2。由于CE=ED=0.5,则D点相遇时甲走了3-0.5-0.5=2份距离,乙走了4/3份距离。故乙先走1小时所走的60千米对应3-4/3=5/3份距离,所以1份距离=60÷5/3=36千米。全程共5份距离,即AB相距180千米。
标签:数量关系
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。