公务员笔试 容斥问题知识点及实例解析

编辑:

2013-04-09

解法1:画三个圆圈使它们两两相交,彼此分成7部分(如图)这三个圆圈分别表示三种不同爱好的同学的集合,由于三种都喜欢的有12人,把12填在三个圆圈的公共部分内(图中阴影部分),其它6部分填上题目中所给出的不同爱好的同学的人数(注意,有的部分的人数要经过简单的计算)其中设既喜欢看电影又喜欢看球赛的人数为χ,这样,全班同学人数就是这7部分人数的和,即

16+4+6+(40-χ)+(36-χ)+12=100

解得 χ=14

只喜欢看电影的人数为36-14=22

解法2:设A={喜欢看球赛的人},B={喜欢看戏剧的人},C={喜欢看电影的人},依题目的条件有|A∪B∪C|=100,|A∩B|=6+12=18(这里加12是因为三种都喜欢的人当然喜欢其中的两种),|B∩C|=4+12=16,|A∩B∩C|=12,再设|A∩C|=12+χ由容斥原理二:|A∪B∪C |=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|

得:100=58+38+52-(18+16+х+12)+12

解得:х=14

∴36-14=22

所以既喜欢看电影又喜欢看球赛的人数为14,只喜欢看电影的人数为22。

点评:解法1没有用容斥原理公式,而是先分别计算出(未知部分设为х)各个部分(本题是7部分)的数目,然后把它们加起来等于总数,这种计算方法也叫“分块计数法”,它是利用图示的方法来解决有关问题,希望同学们能逐步掌握此类方法,它比直接用容斥原理公式更直观,更具体。

例7、某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,86人能干焊工工作,既能干车工工作又能干焊工工作的有多少人?

解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车间还有95人。 利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数为163,然后找出这一公共部分,即163-95=68

例8、某次语文竞赛共有五道题(满分不是100分),丁一只做对了(1)、(2)、(3)三题得了16分;于山只做对了(2)、(3)、(4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28分,张灿只做对了(1)、(2)、(5)三题,得了21分,李明五个题都对了他得了多少分?

解:由题意得:前五名同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰好是试题总分的三倍。五人得分总和是16+25+28+21=90。因此,五道题满分总和是90÷3=30。所以李明得30分。

例9,某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?

解:本题只有求出至少教英、日、法三门课中一种的教师人数,才能求出不教这三门课的外语教师的人数。至少教英、日、法三门课中一种教师人数可根据容斥原理求出。根据容斥原理,至少教英、日、法三门课中一种的教师人数为50+45+40-15-10-8+4=106(人)不教这三门课的外语教师的人数为120-106=14(人)

更多内容请进入:公务员频道 > 行政能力测试 > 数量关系

标签:数量关系

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。