国家公务员行测备考多种数列递推规律

编辑:wanghuicms

2013-01-22

以下是威廉希尔app 为大家整理国家公务员行测备考多种数列递推规律供大家学习参考!

递推数列是数列推理中较为复杂的一类数列。其推理规律变化多样,使得很多考生不易察觉和掌握。要想掌握递推数列的解题方法,需要从两个方面入手。一是要清楚递推数列的“鼻祖”,即最典型、最基础的递推数列;二是要明确递推规律的变化方式。

(一)递推数列的“鼻祖”

1,1,2,3,5,8,13,21……

写出这个数列之后,有不少考生似曾相识。其中有一些考生知道,这个数列被称为“斐波那契(Febonacci,原名Leonardo,12-13世纪意大利数学家)数列”或者“兔子数列”。这些考生中还有一些人知道这个数列的递推规律为:从第三项开始,每一项等于它之前两项的和,用数学表达式表示为

这个递推规律是整个数列推理中递推数列的基础所在。在公务员考试中,曾经出现过直接应用这个规律递推的数列。

例题1:(2002年国家公务员考试A类第4题)1,3,4,7,11,( )

A.14 B.16 C.18 D.20

【答案】:C。

【名师解析】:这道题可以直接应用斐波那契数列的递推规律,即

因此所求项为

7+11=18

(二)递推规律的多种变式

例题2:(2006年北京市大学应届毕业生考试第1题)6,7,3,0,3,3,6,9,5,( )

A.4 B.3 C.2 D.1

【答案】:A。

【名师解析】:这是很别致的一道试题。从形式上看,这个数列很特殊,不仅给出的已知项达到了9项之多,而且每一项都是一位数字,由此可以猜到这个数列的运算规律。这个数列从第三项开始存在运算递推规律

取“ ”的尾数

由此可知所求项为

取“9+5=14”的尾数,即4

这道题的运算递推规律是将两项相加之和变为了取尾数。

例题3:(2005年国家公务员考试二卷第30题,2006年广东省公务员考试第5题)1,2,2,3,4,6,( )

A.7 B.8 C.9 D.10

【答案】:C。

【名师解析】:初看这道题容易将题目错看为一个简单的等差数列1,2,3,4,5,6……正是因为存在这样“先入为主”的观点,使得这道题的运算递推规律被隐藏起来。其实本题的运算递推规律很简单。这个数列从第三项开始存在运算递推规律

由此可知所求项为

4+6-1=9

这道题的运算递推规律是在两项相加的基础之上添加了常数项,在本题中常数项为“-1”,在其余题目当中,常数项还可能发生变化,如变为“+1”、“+2”、“-2”等。

 

更多内容请进入:
威廉希尔app 公考频道

标签:数量关系

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。