来源:互联网 编辑:lixy
2012-09-13
【编者按】威廉希尔app 公务员频道提供行测数量关系:排列组合问题之错位排列问题,供考生参考。预祝大家考试顺利!
错位排列问题是一个古老的问题,最先由贝努利(Bernoulli)提出,其通常提法是:n个有序元素,全部改变其位置的排列数是多少?所以称之为“错位”问题。大数学家欧拉(Euler)等都有所研究。 下面先给出一道错位排列题目,让考友有直观感觉。
例1.五个编号为1、2、3、4、5的小球放进5个编号为1、2、3、4、5的小盒里面,全错位排列(即1不放1,2不放2,3不放3,4不放4,5不放5,也就是说5个全部放错)一共有多少种放法?
【解析】:直接求5个小球的全错位排列不容易,我们先从简单的开始。
小球数/小盒数 全错位排列
1 0
2 1(即2、1)
3 2(即3、1、2和2、3、1)
4 9
5 44
6 265
当小球数/小盒数为1~3时,比较简单,而当为4~6时,略显复杂,考友只需要记下这几个数字即可(其实0,1,2,9,44,265是一个有规律的数字推理题,请各位想想是什么?)由上述分析可得,5个小球的全错位排列为44种。
上述是最原始的全错位排列,但在实际公务员考题中,会有一些“变异”。
例2.五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?
【解析】:做此类题目时通常分为两步:第一步,从五个瓶子中选出三个,共有 种选法;第二步,将三个瓶子全部贴错,根据上表有2种贴法。则恰好贴错三个瓶子的情况有 种。
【拓展】:想这样一个问题:五个瓶子中,恰好贴错三个是不是就是恰好贴对两个呢?答案是肯定的,是。那么能不能这样考虑呢?第一步,从五个瓶子中选出二个瓶子,共有 种选法;第二步,将两个瓶子全部贴对,只有1种方法,那么恰好贴对两个瓶子的方法有 种。问题出来了,为什么从贴错的角度考虑是20种贴法,而从贴对的角度考虑是10种贴法呢。在此明确告知,后者的解题过程是错误的,请考友想想为什么?
【提示】:在处理错位排列问题时,无论问恰好贴错还是问恰好贴对,都要从贴错的角度去考虑,这样处理问题简单且不易出错。
更多内容请进入:
标签:数量关系
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。