数学运算中最值问题的解题思路

编辑:wangxx

2012-02-14

最值问题在数学运算的各个专题中显得与众不同。因为它没公式没概念,不像行程问题之类需要记公式和概念。但它却是数学运算中较难的一个专题。很多考生对于最值问题不知道如何下手。

既然最值问题没有公式概念,因此解题思路就显得格外重要了。好在最值问题的解题思路还是较为模式化的。下面我们来通过例题具体谈谈最值问题的解题思路。

【例1】

一次数学考试满分为100分,某班前六名同学的平均分为95分,排名第六的同学得分为86分,假如每个人得分是互不相同的整数,那么排名第三的同学最少得多少分?

解析:最值问题最让人费解的就是它的问题了。6个人的平均分是95,因此他们的总分是95x6=570。题目问:那么排名第三的同学最少得多少分。既然6个人的总分是个定值,而题目要求排名第三的同学得分尽量的少,因此就需要其他个人的得分尽量的多!即要第1名,第2名,第4名,第5名,第6名的得分都尽量的高。第1名得分尽量高当然就是得100分;第2名得分尽量高,但不能高过第一名,因此第2名得得分是99;第3名是题目所求的,设为x;第4名的得分也要尽量的高,但是再高也不能高过第3名,因此第4名得得分最多为x-1;第5名得得分也要尽量的高,但再高不能高过第4名,因此第5名的得分最多为x-2;第6名的得分题目已经给出为86分。因此在排名第3的同学得分最少的情况是6个人得分分别为:100,99,x,x-1,x-2,86分。6个人的总分是570,因此100+99+x+(x-1)+(x-2)+86=570。解得x=96。选

【例2】

5人的体重之和是423斤,他们的体重都是整数,并且各不相同,则体重量最轻的人,最重可能重

A.80斤 B.82斤 C.84斤 D.86斤

解析:5个人的体重之和是423斤,为一个定值。要求第5名的体重最重,即要其他4个人的体重尽量的轻。假设第5名得体重为x;第4名得体重要尽量的轻,但是再轻不能轻过第5名,因此第4名最少为x+1;第3名得体重要尽量的轻,但是再轻不能轻过第4名,因此第3名最少为x+2;第2名得体重要尽量的轻,但是再轻不能轻过第3名,因此第2名最少为x+3,;第1名得体重要尽量的轻,但是再轻不能轻过第2名,因此第1名最少为x+4。这样,在第5名体重最重的情况即5个人的体重分别为:x+4,x+3,x+2,x+1,x。他们的体重之和为423,即(x+4)+(x+3)+(x+2)+(x+1)+x。解得x=82.6。但题目要求每个人的得分必须是整数,因此这个82.6只是理论值。因此最多为82。选

这2题基本就代表了最值问题第二类的解题思路,虽然最值问题很难,但由于它的解题思路是相对较为固定的,所以只要掌握了这种思路,解题也不会很难。最值问题的思路总结为:先考虑题目问的是某个人最多还是最少,如果要求最多则要其他人尽量的少。然后讨论每个人怎样才是尽量多或尽量少,将题目要问的那个人设为x。根据几个人的和是定值来列方程解方程,注意如果解出来是小数的话要讨论是舍还是入。一般题目要求这个人最多是多少就舍,要求这个人最少是多少就入。

更多请进入

威廉希尔app 公考频道

公务员在线模拟考试

威廉希尔app 公考论坛

标签:数量关系

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。