国家公务员行测指导:周期问题

编辑:sx_yanghx

2012-10-23

【编者按】一年一度的国考公务员考试报名又在如火如荼的进行中,为了使大家都能考出满意的成绩,威廉希尔app 的编辑在这里为您整理了国家公务员行测指导:周期问题,希望对大家有所帮助!

在行测的数学运算部分,尤其是近些年经常会出现一些周期性的题目,但考察的方式却极为广泛。对此类题型,很多学生都反应,平时也做了大量的题,一到考场就感觉无从下手,之所以造成这种反差,认为主要还在于同学们对周期问题还未抓住其本质的特点。下面,针对周期问题进行详解。

例1:有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?( )(2011.4.24联考)

A. 11点整 B. 11点20分 C. 11点40分 D. 12点整

解析:这是一道求最小公倍数的周期问题。从题中可得,甲公交车每40分钟一趟,是一个周期T=40的周期函数;乙公交车每25分钟一趟,是一个周期T=25的周期函数;丙公交车每50分钟一趟,是一个周期T=50的周期函数,上午8点三车同时出发,求三车下次同时到达公交总站的时间,其实就是求三个周期函数的交点,交点必是三个不同周期40,25,50的最小公倍数200,所以从早上8点开始,经历200分钟后,三车同时到达公交总站,所以选B。

例2:甲每隔4天进城一次,乙每隔8天进城一次,丙每隔11天进城一次,某天三人在城里相遇,那么下次相遇至少要?( )

A. 60天 B. 180天 C. 54天 D. 162天

解析:这是一道求最小公倍数的周期问题。此题描述了甲、乙、丙三个人,分别代表三个不同周期的函数,求三个周期函数的交点,从数学角度讲,本题难度和解题思路与例1是一样的;从言语角度讲,本题难度比上一题加大了,甲每隔4天进一次城,其实是甲每5天进一次城;乙每隔8天进一次城,其实是每9天进一次城;丙每隔11天进一次城,其实是每12天进一次城,不少考生掉入陷阱,误求4,8,11的最小公倍数;本题正确解法为求5,9,12的最小公倍数,最小公倍数是180天。故选B。

例3:在我国民间常用十二生肖进行纪年,十二生肖的排列顺序是:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。2011年是兔年,那么2050年是( )(2011安徽省考)

A. 虎年 B. 龙年 C. 马年 D. 狗年

解析:读完题,可以很容易判断出来这是一道周期问题,并且周期T=12。但是,此题与上面两道周期例题有明显的区别:上面两道题有几个不同周期函数并有交点,解题思路求最小公倍数即可;本题只有一个周期函数,这就是周期问题的第2类题型,仅有一个周期函数题型。我们认为,这种题型解起来很简单,大家只要记住周期公式即可:总数÷周期数=循环式…余数(不能整除)。总数:2050-2011=39,周期数=12,39÷12=3…3,从2011年到2050年要经历3个循环余3年,2011+12×3=2047,2011年是兔年,所以3个循环后2047年也兔年,再加3年,所以2050年是马年。故选C。

例4:1路、2路和3路公交车都是从8点开始经过A站后走相同的路线到达B站,之后分别是每30分钟,40分钟和50分钟就有1路、2路和3路车到达A站。在傍晚17点05分有位乘客在A站等候准备前往B站,他先等到几路车?( )(2011.9.17联考)

A. 1路 B. 2路 C. 3路 D. 2路和3路

解析:这是一道周期问题。从早上8点到下午17点05分,共经历545分钟,1路车的周期数为30,2路车的周期数为40,3路车的周期数位50。545÷30=18…5,从早上8点开始,到下午17:05分,共有18辆1路车经过A站,乘客在等第19辆1路车时,已经等了5分钟,30分钟一趟1路车,所以还需再等25分钟;545÷40=13…25,从早上8点开始,到下午17:05分,共有13辆2路车经过A站,乘客在等第14辆2路车时,已经等了25分钟,40分钟一趟2路车,所以还需再等15分钟;545÷50=10…45,从早上8点开始,到下午17:05分,共有10辆3路车经过A站,乘客在等第11辆3路车时,已经等了45分钟,50分钟一趟3路车,所以还需再等5分钟,所以最先等到3路车。故选C。

更多内容请进入:

威廉希尔app 公务员频道

标签:行政综合

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。