公务员考试难度加深:“多次相遇问题”剖析

编辑:

2012-09-20

“直线型”总结(熟记)

①两岸型:

第n次迎面碰头相遇,两人的路程和是(2n-1)S。

第n次背面追及相遇,两人的路程差是(2n-1)S。

②单岸型:

第n次迎面碰头相遇,两人的路程和为2ns。

第n次背面追及相遇,两人的路程差为2ns。

下面列出几种今后可能会考到的直线型多次相遇问题常见的模型:

{模型一}:根据2倍关系求AB两地的距离。

【例1】甲、乙两人在A、B两地间往返散步,甲从A,乙从B同时出发,第一次相遇点距B

60米,当乙从A处返回时走了10米第二次与甲相遇。A、B相距多少米?

A、150 B、170 C、180 D、200

【答案及解析】B。如下图,第一次相遇在a处,第二次相遇在b处,aB的距离为60,Ab的距离为10。以乙为研究对象,根据2倍关系,乙从a到A,再到b共走了第一次相遇的2倍,即为60×2=120米,Ab为10,则Aa的距离为120-10=110米,则AB距离为110+60=170米。

 

5

 

{模型二}:告诉两人的速度和给定时间,求相遇次数。

【例2】甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米。

两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则

从出发开始计算的1分50秒内两人共相遇多少次?

A、2 B、3 C、4 D、5

 

6

 

{模型三}:告诉两人的速度和任意两次迎面相遇的距离,求AB两地的距离。

【例3】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。甲车每小时行

20千米,乙车每小时行50千米,已知两车第10次与第18次迎面相遇的地点相距60千米,

则A、B相距多少千米?

A、95 B、100 C、105 D、110

【答案及解析】C。走相同时间内,甲乙走的路程比为20:50=2:5。将全程看成7份,则第一次相遇走1个全程时,甲走2份,乙走5份。以甲为研究对象(也可以以乙),第10次迎面相遇走的全程数为2×10-1=19个,甲走1个全程走2份,则走19个全程可走19×2=38份。7份是一个全程,则38份共有38÷7=5…3份(当商是偶数时从甲的一端数,0也是偶数;当商是奇数时从乙的一端数,比如第1个全程在乙的一端,第2个全程在甲的一端)从乙端数3份。同理当第18次相遇,甲走的份数为(2×18-1)×2=70份。共有70÷7=10个全程,10为偶数在甲的端点。如下图:

 

6

 

则第10次相遇与第18次相遇共有4份为60千米,所以AB长为(60/4)×7=105千米。

点评:对于给定任意两次的距离,主要是根据速度转化为全程的份数,找一个为研究对象,看在相遇次数内走的全程数,从而转化为份数,然后根据一个全程的份数,将研究对象走的总份数去掉全程的个数看剩余的份数,注意由全程的个数决定剩余的份数从哪一端数。

【例4】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。甲车每小时行

45千米,乙车每小时行36千米,已知两车第2次与第3次迎面相遇的地点相距40千米,

则A、B相距多少千米?

A、90 B、180 C、270 D、110

【答案及解析】A。法一:同上题。相同时间,甲、乙路程比为45:36=5:4,则将全程分成9份。则一个全程时甲走5份,乙走4份。以甲为研究对象,第2次相遇,走的全程数为2×2-1=3个,则甲走的份数为3×5=15份,一个全程为9份,则第2次相遇甲走的份数转化为全程的个数为15÷9=1…6份,则从乙端数6份。第3次相遇走的份数为(2×3-1)×5=25份,转化为全程的个数为25÷9=2…7,则从甲端数7份。如下图:

 

7

 

标签:行政综合

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。