江苏公务员行测数字推理快速突破

编辑:zhangrongfangcms

2013-02-03

随着公务员的热潮,越来越多的人倾向于考公务员,在此,威廉希尔app 的小编为大家提供了江苏省公务员考试的行测考试的相关知识,希望对大家有所帮助。

对于数字推理的“推不出来”,很多考生颇有感受,叫苦连天。与考生交谈中逐渐了解到,不少考生在备考时并不是做题不多,而是做过就放,并没有很系统的归类和总结。其实每道数字推理都是基于一些基本数列的简单变形而已。其中最常见的一种变形方式就是添加“修正项”。

例1:(2010年江西第41题)0,1,5,23,119,( )

A.719 B.721 C.599 D.521

解析:A。该数列是阶乘数列1!=1,2!=2,3!=6,4!=24,5!=120的每一项添加了修正项“-1”而得的,加上该修正项之后,所求项恰好为6!-1=719。

由该题可以认识到两个三个层面的内容:第一,数字推理有不少试题看似很难,其实只是一些基本数列的简单变形;第二,推想一下“-1”可以作为修正项,那么其他数字,甚至是简单的数列皆可作为修正项;第三,该数列是以阶乘数列作为基础数列进行修正,那么其余的数列也可以作为基础数列。

例2:(2008年吉林甲级第1题)0,0,3,20,115,( )

A.710 B.712 C.714 D.716

解析:C。该数列是阶乘数列1!=1,2!=2,3!=6,4!=24,5!=120的每一项分别添加修正项-1、-2、-3、-4、-5而得的,根据此规律所求项恰好为6!-6=714。

以上两题均以阶乘数列作为基本数列,除了阶乘数列之外,修正项还可应用到幂次数列、递推数列当中。

例3:(2007年黑龙江B类第2题,2007年广东上半年第3题,2007年广西第50题,2008年江西第30题,2008年黑龙江第3题,2010年国家第4题)3,2,11,14,( ),34

A.18 B.21 C.24 D.27

解析:D。该数列是平方数列12=1,22=4,32=9,42=16,(),62=36的每一项依次添加修正项+2、-2、+2、-2、+2、-2而得的,根据此规律所求项恰好为52+2=27。

该试题除了利用平方数列作为基础数列之外,还有两个方面值得注意。一个是修正项直接从数字2开始,另一个是修正项的正负号进行交叉。一般来说修正项不会很大,目前为止的考题中,修正项最大的为5。

例4:(2008年国家第45题)14,20,54,76,( )

A.104 B.116 C.126 D.144

解析:C。该数列是奇数的平方数列32=9,52=25,72=49,92=81的每一项依次添加修正项+5、-5、+5、-5而得的,根据此规律所求项恰好为112+5=126。

在求解这类试题时,需要注意的一点是所求项的修正项是正还是负的问题,如果正负搞错了的话,最后推出来的结果就会错。

除了依靠基本数列进行修正之外,还可以对递推数列还有递推规律进行修正。

例5:(2005年国家二卷第30题,2006年广东第5题,2007年广东上半年第4题,2008年广西第7题,2008年江苏B类第70题)1,2,2,3,4,6,( )

A.7 B.8 C.9 D.10

解析一:C。该数列可以看做是将斐波那契数列0,1,1,2,3,5的每一项添加修正项“+1”而得,根据此规律所求项恰好为8+1=9。

解析二:C。该数列的递推规律为an=an-1+an-2-1,该递推规律恰好是斐波那契数列递推规律an=an-1+an-2添加了修正项“-1”而得。

通过以上例题可以看出,修正项是数字推理中普遍存在的现象,一方面要了解阶乘数列、平方数列、立方数列、递推数列(斐波那契数列)等基本数列,另一方面要能将这些数列的不同修正情况融会贯通起来,举一反三才能在新的试题中立于不败之林。

更多信息

公务员考试频道

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。