编辑:
2013-01-10
【例1】分母是1001的最简分数一共有多少个?
【解析】这一题实际上就是找分子中不能与1001进行约分的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。
1~1001中,有7的倍数1001/7 = 143 (个);有11的倍数1001/11 = 91 (个),有13的倍数1001/13 = 77 (个);有7´11=77的倍数1001/77 = 13 (个),有7´13=91的倍数1001/91 = 11 (个),有11´13=143的倍数1001/43 = 7 (个).有1001的倍数1个。
由容斥原理知:在1~1001中,能被7或11或13整除的数有(143+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个。
【例2】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( )
A.22 B.18 C.28 D.26
【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。
【例3】某校六(1)班有学生45人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
【解析】参加足球队的人数25人为A类元素,参加排球队人数22人为B类元素,参加游泳队的人数24人为C类元素,既是A类又是B类的为足球排球都参加的12人,既是B类又C类的为足球游泳都参加的9人,既是C类又是A类的为排球游泳都参加的8人,三项都参加的是A类B类C类的总和设为X。注意:这个题说的每人都参加了体育训练队,所以这个班的总人数即为A类B类和C类的总和。25+22+24-12-9-8+X=45 解得X=3
【例4】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人?
【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96;
A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。
标签:湖北公务员考试信息
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。