编辑:
2015-09-06
十六、当题目中出现几比几、几分之几等分数时,谨记倍数关系的应用,关键是:前面的数是分子的倍数,后面的数是分母的倍数。譬如:A=B×5/13,则前面的数A是分子的倍数(即5的倍数),后面的数B是分母的倍数(即13的倍数),A与B的和A+B则是5+13=18的倍数,A与B的差A-B则是13-5=8的倍数。
十七、当题目中出现了好几次比例的变化时,记得特例法的应用。如果是加水,则溶液是稀释的,且减少幅度是递减的;如果是蒸发水,则溶液是变浓的,且增加幅度是递增的。
十八、当数学运算题目中出现了甲、乙、丙、丁的“多角关系”时,往往是方程整体代换思想的应用。对于不定方程,我们可以假设其中一个比较复杂的未知数等于0,使不定方程转化为定方程,则方程可解。
十九、注意余数相关问题,余数的范围(0≤余数≤除数)及同余问题的核心口诀,“余同加余,和同加和,差同减差,除数的最小公倍数作周期”。
二十、在工程问题中,要注意特例法的应用,当出现了甲、乙、丙轮班工作现象时,假设甲、乙、丙同时工作,找到将完成工程总量的临界点。
二十一、当出现两种比例混合为总体比例时,注意十字交叉法的应用,且注意分母的一致性,谨记减完后的差之比是原来的质量(人数)之比。
二十二、重点掌握行程问题中的追及与相遇公式,相遇时间=路程和/速度和、追击时间=路程差/速度差; 唤醒运动中的:异向而行的 跑到周长/速度和、 同向而行的 跑到周长/速度差;钟面问题的 T/(1±1/12)。
二十三、流水行船问题中谨记两个公式,船速=(顺水速+逆水速)/2、水速=(顺水速-逆水速)/2
二十四、题目所提问题中出现“最多”、“最少”、“至少”等字眼时,往往是构造类和抽屉原理的考核,注意条件限制及最不利原则的应用。
二十五、在排列组合问题中,排列、组合公式的熟练,及分类(加法原理)与分步(乘法原理)思想的应用。并同概率问题联系起来,总体概率=满足条件的各种情况概率之和,分步概率=满足条件的每个步骤概率之积。
二十六、重点掌握容斥原理,两个集合容斥用公式:满足条件1的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数,并注意两个集合容斥的倍数应用变形。三个集合容斥文字型题目用画图解决,三个图形容斥用公式解决:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C
二十七、注意“多1”、“少1”问题的融会贯通,数数问题、爬楼梯问题、乘电梯问题、植树问题、截钢筋问题等。
二十八、注意几何问题中的一些关键结论,两边之和大于第三边,两边之差小于第三边;周长相同的平面图形中,圆的面积最大;表面积相同的立体图形中,球的体积最大;无论是堆放正方体还是挖正方体,堆放或者挖一次都是多四个侧面;另外谨记“切一刀多两面”。
二十九、看到“若用12个注水管注水,9小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用多少小时注满水池?”等类似排比句的出现,直接代入牛吃草问题公式,原有量=(牛数-变量)×时间,且注意牛吃草量“1”及变量X的变化形式。
三十、记住这些好用的公式吧:
裂项相加的(1/小-1/大)×分子/差。日期问题的“一年就是一闰日再加一(加二)”。等差数列的An=A1+(n-1)×d, Sn=((A1+An) ×n)/2。剪绳子问题的2N×M+1。方阵问题的最外层人数=4×(N-1);方阵总人数=N×N。年龄问题的五条核心法则。翻硬币问题:N(N必须为偶数)枚硬币,每次同时翻转其中N-1枚,至少需要N次才能使其完全改变状态;当N为奇数时,每次同时翻转其中偶数枚硬币,无论如何翻转都不能使其完全改变状态。拆数问题:只能拆成2和3,而且要尽可能多的拆成3,2的个数不多于两个。换瓶子问题的,所换新瓶数=原购买瓶数/(N-1)。
16年国家公务员考试数量关系就分享到这里了,威廉希尔app 将会为您带来最新的、最完美的文章,希望大家随时关注威廉希尔app 。
相关推荐:
标签:数量关系
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。