国家公务员考试行测数字推理题指导

编辑:sx_xiexh

2014-08-09

对于广大备考的考生来讲,如何能够找到跟考试内容贴近的最新的辅导资料是大家最为关心的问题,威廉希尔app 为您提供了公务员考试行测数字推理题,希望对于您的复习备考起到巨大的作用!

1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b

2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。它们之间的差为1、3、5、7,成等差数列。这些规律还有差之间成等比之类。各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,作出合理的分组。如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。首尾关系经常被忽略,但又是很简单的规律。B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。如21、31、47、56、69、72,它们的十位数就是递增关系,如 25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上解答:256,269,286,302,(),2+5+6=13    2+6+9=17   2+8+6=16  3+0+2=5,∵ 256+13=269  269+17=286  286+16=302 ∴ 下一个数为 302+5=307。

7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。gwyzk.com

8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。

补充:

1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略

如1/2、1/6、1/3、2、6、3、1/2

2)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉

如看到2、5、10、17,就应该想到是1、2、3、4的平方加1

如看到0、7、26、63,就要想到是1、2、3、4的立方减1

对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距递增,且递增速度较快gwyzk.com

3)A^2-B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来

如数列 5,10,15,85,140,7085

如数列 5, 6, 19, 17 , 344 , -55

如数列 5, 15, 10, 215,-115

这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看

4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项

如数列 1, 8, 9, 64, 25,216

奇数位1、9、25 分别是1、3、5的平方

偶数位8、64、216是2、4、6的立方

先补充到这儿。。。。。。

5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系

如数列:1、2、3、6、12、24

由于后面的数呈2倍关系,所以容易造成误解!

以上就是威廉希尔app 为您提供的公务员考试行测数字推理题,不知道是否是您想要的辅导资料,更多尽在威廉希尔app ~

2015年国考行测数量关系备考:排列组合插板模型  

15年国家公务员考试数量关系指导:排列组合错位重排模型

标签:数量关系

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。