2013年国家公务员考试行测数量:抽屉问题解析

编辑:

2013-01-10

证明:常人的头发数在15万左右,可以假定没有人有超过100万根头发,但北京人口大于100万。如果我们让每一个人的头发数呈现这样的规律: 第一个人的头发数为1,第二个人的头发数为2,以此类推,第100万个人的头发数为100万根;由此我们可以得到第100万零1个人的头发数必然为 1-100万之中的一个。于是我们就可以证明出北京至少有两个人的头发数是一样多的。

定理2:如果有N个笼子,KN+1只鸽子,那么不管怎么分,至少有一个笼子里有K+1只鸽子。

举例:盒子里有10只黑袜子、12只蓝袜子,你需要拿一对同色的出来。假设你总共只能拿一次,只要3只就可以拿到相同颜色的袜子,因为颜色只有两种(鸽巢只有两个),而三只袜子(三只鸽子),从而得到“拿3只袜子出来,就能保证有一双同色”的结论。

二、公务员考试抽屉问题真题示例  在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点,下文,通过经典例题来分析抽屉原理的使用。

例1:从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7?

A. 7 B. 10 C. 9 D. 8

解析:在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能 与其他数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个 抽屉。所以选择D选项。

例2:某班有37名同学,至少有几个同学在同一月过生日?

解析:根据抽屉原理,可以设3×12+1个物品,一共是12个抽屉,则至少有4个同学在同一个月过生日。

熟练掌握抽屉原理,能有效提高数量关系中抽屉原理相关问题的解答速度,这对于寸秒寸金的行测考试来说是非常有利的。

标签:行测辅导

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。