编辑:sx_bilj
2015-04-18
在行测考试中,容斥原理令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不到头绪,但该题型还是有着非常明显的内在规律,下面为大家讲解一下行测容斥原理解题技巧,相信能给考生带来一定的帮助。
一、两集合类型
1.解题技巧
题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:
A∪B=A+B-A∩B
快速解题技巧:总数=两集合之和+两集合之外数-两集合公共数。
2.真题示例
【例1】现有50名学生都做物理,化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对有()
A 27人 B 25人 C 19人 D 10人
【解析】B。直接带入公式为:50=31+40+4-A∩B ,得 A∩B=25,所以答案为B。
二、三集合类型
1.解题步骤
涉及三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。
2.解题技巧
三集合类型题的解题技巧主要包括一个计算公式和文氏图。
公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数
3.真题示例
【例2】某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加任何一种考试的有15人。问接受调查问卷的学生共有多少人?()
A.120 B.144 C.177 D.192
【解析】A。先画图,填充三个集合公共部分数字24,再推其他数字;根据每个区域含义应用公式得到:总数=各集合之和-两两集合数之和+三集合公共数+三集合之外数 =63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+y+z)+24+24+24}+24+15。根据上述含义分析得到:x+y+z只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+y+z的值为46人;得本题答案为120。
【例3】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人?
A.22人 B.28人 C.30人 D.36人
【解析】A。根据各区域含义及应用公式得到:总数=各集合之和-两两集合数之和+三集合公共数+三集合之外数。100=58+38+52-{18+16+(12+x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得:x=14。52=x+12+4+y=14+12+4+y,得到y=22人。
由威廉希尔app 公务员频道为大家整理的行测容斥原理解题技巧就到这里了,希望可以对各位考生有所帮助!
相关推荐:
标签:行测指导
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。