编辑:
2016-09-08
(3)全称量词与存在量词
①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。
②能正确地对含有一个量词的命题进行否定。
3.导数及其应用(约16课时)
(1)导数概念及其几何意义
①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例3)。
②通过函数图像直观地理解导数的几何意义。
(2)导数的运算
①能根据导数定义,求函数y=c,y=x,y=x2,y=1/x的导数。
②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
③会使用导数公式表。
(3)导数在研究函数中的应用
①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。2.圆锥曲线与方程(约12课时)
(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。
(2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。
(3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。
(4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。
(5)了解圆锥曲线的简单应用。
三.统计案例(约14课时)
通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。
①通过对典型案例(如"肺癌与吸烟有关吗"等)的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。
②通过对典型案例(如"质量控制"、"新药是否有效"等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。
③通过对典型案例(如"昆虫分类"等)的探究,了解聚类分析的基本思想、方法及初步应用。
④通过对典型案例(如"人的体重与身高的关系"等)的探究,进一步了解回归的基本思想、方法及初步应用。
2.推理与证明(约10课时)
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见例2、例3)。
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。
精品小编为大家提供的高二数学上册概率统计知识点,大家仔细阅读了吗?最后祝同学们学习进步。
相关推荐:
标签:数学知识点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。