您当前所在位置:首页 > 高中 > 说课稿 > 高一数学说课稿

人教版高中高一数学说课稿《几类不同增长的函数模型》

编辑:

2014-07-08

澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.

问题2:在生活中,你还能举出其它增长的例子吗?

2.在学生回答问题的基础上引出各种不同类型的函数增长模型.

3.揭示课题:几类不同增长的函数模型.

【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.

二、分析问题,建立模型

(一)提出问题

例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的

回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.

请问:你会选择哪种投资方式?

(二)分析问题

1.引导审题,抓住关键词“回报”

问题3:你选择的是什么样的回报?怎样比较回报资金的大小?

从解决问题的角度看:

(1)比较三种方案的每日回报;

(2)比较三种方案在若干天内的累计回报.

2.引导分析数量关系,建立函数模型

仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.

【设计意图】引发学生思考,经历建立函数基本模型的过程.

【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.

三、组织探究,感性体验

1.教师提出问题

问题4:你会选择哪种投资方案?请用数学语言呈现你的理由.

2.学生分组操作,比较不同增长

从解决问题的方式上:

(1)用列表方法来比较;

(2)画出函数图象来分析.

【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法.

四、成果交流,阶段小结

(一)学生交流

让学生交流小组探究的成果(表格、图象、结论)

(二)师生互动

1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异.

2.通过教师多媒体动态演示,让学生进一步体会增长差异.

在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.

(三)归纳小结

1.通过教师的小结,增强学生对增长差异的认识.

常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).

2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.

【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.

五、深入探究,理性分析

(一)提出问题

例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金 (单位:万元)随销售利润 (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型: .其中哪个模型能符合公司的要求?

(二)引导分析

问题5:你能立刻做出选择吗?选择的依据是什么?

问题6:公司的要求到底意味着怎样的数学关系?

问题7:我们提供的三个增长型函数哪一个符合限制条件?

(三)解决问题

1.通过多媒体演示,发现增长差异;

2.结合限制条件,初步作出选择;

3.通过计算,进一步确认,验证所得结论;

4.体会对数增长模型的增长特征:当自变量变得很大时平缓增长;

5.揭示函数问题的研究方法(观察—归纳—猜想—证明).

【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.

【备注】对判断模型二 是否满足限制条件“ ”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).

六、拓展延伸,创新设计

这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.

问题8:我们的奖励方案有什么弊端?

问题9:你能否设计出更合理的奖励模型?

【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,要求如下:

10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)

【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.

七、归纳总结,提炼升华

问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。