编辑:
2014-07-03
函数 解析式 平移变换规律
1 2 向左平移2个单位,向上平移1个单位
实验结论
实验2、试改变实验平台2中的参数 、 及函数 的解析式,观察由 的图象到 的变换现象,依照给出的样例填写下表,进一步总结平移变换规律。
平移变换
向右平移2个单位,向上平移3个单位
实验结论
两个实验从某种意义上也是两道数学开放题,实验1期望学生能根据参数 、 的符号作简单分类,并总结不同情形下图象的平移方向,从而找出其中的规律,并且为了便于确定平移方向,须将 的形式化为 ;实验2期望学生能根据所学的具体函数对 作不同的举例,加深对基本函数的认识,从而一定程度上也能训练学生思维的广度和深度。
4.3合作交流,理性升华
实验结论:两函数 、 图象形状相同、位置不同,函数 的图象 轴方向上移动 个单位( ,向左平移; ,向右平移)、 轴方向上移动 个单位( ,向下平移; ,向上平移)可得到函数 的图象。
实验结论在小组归纳的基础上,由小组代表利用实物投影仪、广播软件面对全班作交流,然后由教师作下列内容的讲解。
设点 为函数 图象上任意一点,
将 点向左平移 个单位、向下平移 个单位后得到点
又 ,得 ,
从而点 为函数 上的点
形式化的推导不要求学生掌握,主要想引导学生认识到不完全归纳的实验结论还要有理性证明才能真正成为结论。
4.4巩固练习,深化知识
例1、根据函数图象平移规律填空
1. 将 的图象 可得到 的图象
2. 将 的图象 可得到 的图象
3. 将 的图象 可得到 的图象
4. 将 的图象向右平移3个单位、向上平移1个单位所得图象的解析式为
5. 将 的图象向左平移2个单位、向上平移3个单位所得图象的解析式为
6. 将 的图象向右平移1个单位、向下平移2个单位所得图象的解析式为
7. 的图象可由 平移得到
8. 的图象可由 平移得到
4.5突破难点,反思提高
上例中的3估计学生会出错,可能会不提系数,误认为 轴上的平移量为
1、利用软件工具进行比较
利用实验平台, 值不变的前提下改变 的值,平移量发生改变,引发学生认知冲突,使学生认识到平移量与 、 都有关,产生强烈的探究心理,
2、从函数解析式理解
设 ,则 ,
而 从而例1(3)中 轴上的平移量为
因此,函数式变形过程中要注意函数解析式的实质意义,又如 ,
则 :
通过比较加深对形式化的函数解析式的理解和认识。
4.6应用探究,拓展提高
例2、利用平移变换规律,作出下列函数图象,并求函数的值域及单调区间
1.
解:
将 的图象向右平移2个单位,向上平移3个单位,得到右图
由图知,
∴函数值域为
函数在 上单调增加
2.
解:
将 的图象向左平移2个单位,向下平移1个单位,得到右图
如图知,函数在 上单调增加
∴
∴函数的值域为
3.
解:
将 的图象向左平移2个单位,向上平移2个单位,得到右图
如图知,函数在 上单调减小,在 上单调减小
函数的值域为
五.说评价
作为一节命题新授课,在教法上,我打破了传统的教学模式。精心设计数学实验,积极引导、启发学生自主探索,经过观察、类比、归纳,最终得出函数图象的平移规律。
当然教学设计的好坏,还有待于教学过程及结果的检验。须要指出的是,本课的数学实验是利用几何画板4.06创设的,因此学生的自主实验需要有一定的几何画板基础,并且课堂教学是一个动态的过程,学生的思维又常常受到课堂气氛、突发事件的影响,为了达到最佳的教学效果,我将“教学反应”型评价和“教学反馈”型评价相结合,一方面根据课堂实施的情况和学生反馈的信息作出一种即时性评价,并顺势从教学内部进行调节;另一方面根据课堂练习的反馈,了解学生掌握知识的程度,灵活安排教学细节,从而达到教学的预期效果。
总结:高一数学:函数图象的平移说课稿就为大家介绍到这儿了,祝大家在威廉希尔app 学习愉快。
标签:高一数学说课稿
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。