您当前所在位置:首页 > 高中 > 教学计划 > 高一数学教学计划

高一上学期数学教学计划模板:指数函数

编辑:

2016-09-12

(三)深入研究图像,加深理解性质

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。

第一环节:分三步

(1)让学生作图   (2)观察图像,发现指数函数的性质  (3)归纳整理

学生课前准备:利用描点法作函数y=2x,y=3x,以及y=(1/2)x、y=(1/3)x的图像。

设计意图:(1)观察总结a>1,0

(2)观察y=2x与y=2-x,y=3x与y=3-x图像关于y轴对称。

(3)在第一象限指数函数的图像满足“底大图高。

(4)经过(0,1)点图像位置变化。

变式:去掉底数换成字母,根据图像比较底数的大小。

方法提炼:①用上面得到的规律;

②作直线x=1与指数函数图像相交的纵坐标,即为底数。

第二环节:

利用多媒体教学手段,通过几何画板演示底数a 取不同的值时,让学生观察函数图像的变化特征,归纳总结:y=ax的图像与性质

以y=2x为例,让学生用单调性的定义加以证明;

设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。

 (2)学习用做商法比较大小。

4、奇偶性:   不具备

5、对称性:y=ax不具备,但底数互为倒数的两个指数函数图像关于y轴对称。从形式上可变为y=ax与y=a-x

总结:两个函数y=f(x),y=f(-x)关于y轴对称。

6、交点:(1)与y轴交于一点(0,1)   (2)与x轴无交点(x轴为其渐近线)

7、 当x>0时,y>1;当x<0时,00时, 0<0时, y>1

8、y=ax(a>0且a≠1)在第一象限图像“底大图高”(直线x=1辅助)

难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。

为帮助学生记忆,教师用一句精彩的口诀结束性质的探究:

左右无限上冲天,永与横轴不沾边。

 大1增,小1减,图像恒过(0,1)点。

(四)强化训练落实掌握

例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。

例2:比较下列各题中两值的大小

(1) (4/3)-0.23 与(4/3)-0.25;      (2) (0.8)2.5与(0.8)3 。

方法指导:同底指数不同,构造指数函数,利用函数单调性

(3) 与 ;(4) 与

方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。

(5)(3/4)2/3与(5/6)2/3;(6)(-2.1)3/7与(-2.2)3/7

方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。

(7)(0.3)-3与(2.3)2/3;(8)1.70.3与0.93.1。

方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)3〔(10/3)2/3或(2.3)3〕(2.3)2/3。

变式:已知下列不等式, 比较 的大小 :

(l)

(2)

(3)  ( 且 )

(4)

设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。

(五)归纳总结,拓展深化

请学生从知识和方法上谈谈对这一节课的认识与收获。

1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1 和1>a>0时函数图像的不同特征和性质是学好本节的关键。

2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。

(六)布置作业,延伸课堂

A类:(巩固型)面向全体同学

1、完成课本P93/习题3-1  A

B类:(提高型)面向优秀学生

2、完成学案P1/题型1。

精品小编为大家提供的高一上学期数学教学计划模板,大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

沪教版高一数学不等式的证明教学计划范文:第二单元

沪教版高一数学基本不等式及其应用教学计划范文:第二单元

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。