编辑:
2016-09-23
能称为算法的个数为( )
A.2 B.3 C.4 D.5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾.
【答案】B
[规律总结]
1.正确理解算法的概念及其特点是解决问题的关键.
2.针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题.
【变式训练】 下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤 ③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确.
【答案】④
命题方向2 解方程(组)的算法
例2.给出求解方程组的一个算法.
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组.
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11,
即方程组可化为
第二步,解方程③,可得y=-1, ④
第三步,将④代入①,可得2x-1=7,x=4,
第四步,输出4,-1.
方法二:算法如下:
第一步,由①式可以得到y=7-2x, ⑤
第二步,把y=7-2x代入②,得x=4.
第三步,把x=4代入⑤,得y=-1.
第四步,输出4,-1.
[规律总结]1.本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用.
2.设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤.
看完威廉希尔app 给大家带来的人教B版数学高二上册算法与程序框图教案怎么写,相信老师对教学计划有了更深的认识。更多参考资料尽在威廉希尔app 高中频道。
相关推荐:
标签:高二数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。