您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

人教B版高二数学第一单元教案设计:中国古代数学中的算法案例

编辑:

2016-09-03

如果 ,则执行 ,否则转到 ;

将 的值赋予 ;

若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

输出最大公约数

程序:

a=input(“a=”)

b=input(“b=”)

while a<>b

if a>=b

a=a-b;

else

b=b-a

end

end

print(%io(2),a,b)

学生阅读课本内容,分析研究,独立的解决问题。

教师巡视,加强对学生的个别指导。

由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

教师将两种算法同时显示在屏幕上,以方便学生对比。

教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语

言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。

应用

举例 例1 :用等值算法(更相减损术)求下列两数的最大公约数。

(1)225,135     (2)98,280

例2:用辗转相除法验证上例中两数的最大公约数是否正确。 学生练习,教师巡视检查。

学生回答。 巩固所学知识,进一步加深对知识的理解,用辗转相除法步骤较少,而更相减损术虽然有些步骤较长,但运算简单。

体会我国古代数学中“寓理于算”的思想。

深化

算法

应用

举例 2.割圆术

魏晋时期数学家刘徽,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”

即从圆内接正六边形开始,让边数逐次加倍,逐个算出这些内接正多边形的面积,从而得到一系列逐次递增的数值。

阅读课本P ----P ,

步骤:

第一,从半径为1的圆内接正六边形开始,计算它的面积 ;

第二,逐步加倍圆内接正多边形的边数,分别计算圆内接正十二边形,正二十四边形,正四十八边形…的面积,到一定的边数(设为2m)为止,得到一列递增的数 ,

第三,在第二步中各正边形每边上作一高为余径的矩形,把其面积 与相应的面积 相加,得 ,这样又得到一列递增数: , , ,…, 。

第四,圆面积 满足不等式

看完威廉希尔app 给大家带来的高二数学第一单元教案设计,相信老师对教学计划有了更深的认识。更多参考资料尽在威廉希尔app 高中频道。

威廉希尔app 官方公众平台--【精品高中生】正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“gk51edu”或者直接输入“精品高中生”进行关注!!我们每天会为大家推送最新的内容哦~

精品高中生

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。