您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

高二下册数学优秀教案:三角函数的诱导公式

编辑:

2016-02-25

③设点P(x,y),则点P'的坐标怎样表示?[P'(x,-y)]

④sinα与sin(-α),cosα与cos(-α)关系如何?

⑤tanα与tan(-α),cotα与cot(-α)的关系如何?

7)学生分组讨论,尝试推导公式,教师巡视,及时反馈、矫正、讲评.

8)板书诱导公式

sin(-α)=-sinα,cos(-α)=cosα.

tan(-α)=-tanα,cot(-α)=-cotα.

结构特征:函数名不变,符号看象限(把α看作锐角)

把求(-α)的三角函数值转化为求α的三角函数值.

9)基础训练题组(二):求下列各三角函数值(可查表)

③cos(-240°12');④cot(-400°).

3.3 构建知识系统、掌握方法、强化能力

课堂小结:(以提问、填空形式让学生自己完成)

1)诱导公式:

sin(k·360°+α)=sinα.

cos(k·360°+α)=cosα.

tan(k·360°+α)=tanα.

cot(k·360°+α)=cotα.(k∈Z)

sin(180°+α)=-sinα.

cos(180°+α)=-cosα.

tan(180°+α)=tanα.

cot(180°+α)=cotα.

sin(-α)=-sinα.

cos(-α)=cosα.

tan(-α)=-tanα.

cot(-α)=-cotα.

2)公式的结构特征:函数名不变,符号看象限(把α看作锐角时)

3)方法及步骤:

教学设想 通过提问、填空的形式,引导学生概括归纳已有知识,形成知识系统,发现知识规律及其结构特征,深化对诱导公式内涵和实质的理解,强化记忆.

挖掘知识系统体现数学的归纳转化思想方法,培养学生的概括抽象能力,形成知识网络和方法网络.

4)能力训练题组:(检测学生综合运用知识能力)

5)课外思考题.

①求下列各三角函数值:

6)作业与课外思考题

作业:P162习题十三(1)—(6)

教学设想 通过能力训练题组和课外思考题检测学生综合运用知识的能力,培养学生的创造性思维能力,提高学生分析问题和解决问题的实践能力.

为学生课外留下“余音”,培养学生养成自觉学习、积极探索的良好学习习惯,为下一节课学习诱导公式(四)、(五)作准备.

4 教法分析

根据教学内容的结构特征和学生学习数学的心理规律,本节课采用了“问题、类比、发现、归纳”探究式思维训练教学方法.

4.1 利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,达到以旧拓新的目的.

4.2 由(180°+30°)与30°,(-30°)与30°终边对称关系的特殊例子,利用多媒体动态演示,学生对“α为任意角”的认识更具完备性,通过联想,引导学生进行问题类比、方法迁移,发现任意角α与(180°+α),-α终边的对称关系,进行从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力.

4.3 采用问题设疑,观察演示,步步深入,层层引发,引导联想类比,进而发现、归纳的探究式思维训练教学方法.旨在让学生充分感受和理解知识的产生和发展过程.在教师适时的启发点拨下,学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式),培养学生的创新意识和创新精神,培养学生的思维能力.

4.4 通过能力训练题组和课外思考题,把诱导公式(一)、(二)、(三)的应用进一步拓广,为演绎推导诱导公式(四)、(五)做好理论依据准备,把归纳推理和演绎推理有机结合起来,发展学生的思维能力.

5 评价分析

本节课教学过程中通过问题设疑,引导学生循序渐进的从特殊到一般进行联想、类比、归纳,发现数学公式,体现以教师为主导,学生为主体,积极思维的学习过程.

在问题类比、方法迁移、归纳推理的思维训练过程中,师生的信息交流畅通,反馈及时,评价及时,矫正及时,学生思维活跃,教学活动始终处于教师期望控制中.

5 教案设计说明

5.1 关于本节课教学指导思想

归纳推理是发现和获得知识的基本思维形式,拉普拉斯曾说:“发现真理的主要工具也是归纳和类比”.归纳思维在形成创新意识中具有特殊的重要的地位,归纳思维往往获得的是开拓性的创造(再创造).三角函数求值是三角函数中重要问题之一,诱导公式是解决此类问题的基本方法.教学过程中,通过问题设疑、多媒体动态演示等教学措施,创设问题情境,引导学生从特殊的、个别的属性,通过联想、类比、归纳出具有普遍的、一般的整体性质.体现了学生充分感受和理解知识的产生和发展过程,促使学生积极思维主动探索,勇于发现,敢于创新.通过从特殊到一般的归纳思维训练,学生主动地获得新的知识,并在获得知识的过程中,形成良好的思维品质,发展学生的思维能力.

5.2 关于教学过程的设计

1)重现已有相关知识,为学习新知识作好铺垫.

2)思维总是从问题开始的,在sin1290°的求值过程中,从已知到未知,引发新的问题,营造氛围,引起学生学习需要和学习兴趣,激发学生的求知欲.

3)数学的思想方法是数学素质的核心,由sin210°的求值过程,把未知转化为已知,引导学生发现推导诱导公式的方法和途径,领会数学的归纳转化思想方法.

4)通过多媒体直观动态的演示,从特殊到一般完成所有情况的分类,引导学生联想,进行问题类比、方法迁移、归纳推理出具有普遍性的结论,形成公式,进行归纳思维训练.

5)通过分析诱导公式的结构特征,强化对诱导公式的理解和记忆,深刻领会诱导公式的内涵和实质.构建知识系统,培养学生的概括抽象能力.

6)通过基础训练题组和课外思考题的练习,掌握解决问题的方法,形成技能,提高学生分析问题和解决问题的能力.

最后,希望精品小编整理的高二下册数学优秀教案对您有所帮助,祝同学们学习进步。

相关推荐:

2016高二年级数学任意角和弧度制教案

高二年级数学下册任意的三角函数教案2016

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。