您当前所在位置:首页 > 高中 > 教案 > 高二数学教案

2015高二年级数学教案精选:复数的加减法

编辑:

2015-08-18

例2根据复数的几何意义及向量表示,求复平面内两点间的距离公式.

解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2z1的模.假如用d表示点Z1,Z2之间的距离,那么d=|z2z1|.

例3 在复平面内,满足下列复数形式方程的动点Z的轨迹是什么.

(1)|z1i|=|z 2 i|;

方程左式可以看成|z(1 i)|,是复数Z与复数1 i差的模.

几何意义是是动点Z与定点(1,1)间的距离.方程右式也可以写成|z(2i)|,是复数z与复数2i差的模,也就是动点Z与定点(2,1)间距离.这个方程表示的是到两点( 1,1),(2,1)距离相等的点的轨迹方程,这个动点轨迹是以点( 1,1),(2,1)为端点的线段的垂直平分线.

(2)|z i| |zi|=4;

方程可以看成|z(i)| |zi|=4,表示的是到两个定点(0,1)和(0,1)距离和等于4的动点轨迹.满足方程的动点轨迹是椭圆.

(3)|z 2||z2|=1.

这个方程可以写成|z(2)||z2|=1,所以表示到两个定点(2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线.是双曲线右支.

由z1z2几何意义,将z1z2取模得到复平面内两点间距离公式d=|z1z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程.使有些曲线方程形式变得更为简捷.且反映曲线的本质特征.

例4 设动点Z与复数z= i对应,定点P与复数p= i对应.求

(1)复平面内圆的方程;

解:设定点P为圆心,r为半径,如图

由圆的定义,得复平面内圆的方程|zp|=r.

(2)复平面内满足不等式|zp|

解:复平面内满足不等式|zp|

(五)小结

我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,可以用复数研究解析几何问题,不等式以及最值问题.

(六)布置作业P193习题二十七:2,3,8,9.

探究活动

复数等式的几何意义

复数等式 在复平面上表示以 为圆心,以1为半径的圆。请再举三个复数等式并说明它们在复平面上的几何意义。

分析与解

1. 复数等式 在复平面上表示线段 的中垂线。

2. 复数等式 在复平面上表示一个椭圆。

3. 复数等式 在复平面上表示一条线段。

4. 复数等式 在复平面上表示双曲线的一支。

5. 复数等式 在复平面上表示原点为O、 构成一个矩形。

说明复数与复平面上的点有一一对应的关系,假如我们对复数的代数形式工(几何意义)之间的关系比较熟悉的话,必然会强化对复数知识的把握。

高二年级数学教案介绍到这里就结束了,希望对你有所帮助。

相关推荐:

2015高二数学教案设计:线性规划

高二数学教案:曲线与方程

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。