您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

人教版数学高一上册《对数函数》教案模板

编辑:

2016-08-03

3. 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

三.简单应用  (板书)

1. 研究相关函数的性质

例1.  求下列函数的定义域:

(1)      (2)    (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小 (板书)

例2.  比较下列各组数的大小

(1) 与 ;      (2) 与 ;

(3) 与 ;           (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.巩固练习

练习:若 ,求 的取值范围.

四.小结

五.作业 略

板书设计

2.8对数函数

一. 概念

1.  定义   2.认识

二.图像与性质

1.作图方法

2.草图

图1    图2

3.性质

(1)    定义域(2)值域(3)截距(4)奇偶性(5)单调性

三.应用

1.相关函数的研究

例1    例2

练习

探究活动

(1) 已知 是函数 的反函数,且 都有意义.

① 求 ;

② 试比较 与4 的大小,并说明理由.

(2) 设常数 则当 满足什么关系时, 的解集为

通过对人教版数学高一上册对数函数教案模板的学习,希望对老师有所帮助,提供更多的教学参考内容。

相关推荐:

高一上册数学教案范文《函数及其表示》  

人教版数学高一上册《集合》教案怎么写  

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

威廉希尔app 高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。