您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

高一数学:数列的概念学案

编辑:sx_mengxiang

2014-11-07

教案通常又叫课时计划,包括时间、方法、步骤、检查以及教材的组织等。它是教学成功的重要依据。鉴于教案的重要性,小编精心准备了这篇高一数学:数列的概念学案,我们一起来阅读吧!

●课程目标

1.双基目标

(1)通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊的函数;

(2)通过实例,理解等差数列、等比数列的概念;

(3)探索并掌握等差数列、等比数列的通项公式与前n项和的公式.在公式的推导过程中,通过观察、实验、猜想、归纳、类比、抽象、概括等过程,经过反思、交流,培养学生观察、分析、探索、归纳的能力,体会由特殊到一般,由一般到特殊的思想方法;

(4)体会等差数列与一次函数,等比数列与指数函数的关系;

(5)能在具体问题情境中,发现等差、等比数列模型,并能运用有关知识解决相应的问题.

2.情感目标

(1)通过本章学习提高观察、分析、归纳、猜想的能力.

(2)“兴趣是最好的老师”,数列中的奥妙与趣味定会激发你去学习,去思考,去探索.

(3)通过建立数列模型,以及应用数列模型解决实际问题的过程,培养学生提出、分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础.

●重点难点

重点:等差数列与等比数列的通项公式.

前n项和公式及其应用,等差数列的性质及判定,等比数列的性质及应用.

难点:等差数列、等比数列的性质及应用.

●方法探究

1.结合实例,通过观察、分析、归纳、猜想,让学生经历数列概念、公式、性质的发现和推证过程,发现数列的递推公式,体会递推方法是给出数列和研究有关数列问题的重要方法.

2.借助类比、对比,体会数列是一种特殊的函数.经历类比函数研究数列,使用函数的思想方法解决数列问题,对比等差数列研究等比数列,对比一次函数、二次函数、指数函数研究等差数列、等比数列的过程 .

3.引导学生收集有关资料,经历发现等差(等比)关系,建立等差数列和等比数列的模型的过程,探索它们的概念、通项公式、前n项和公式及其性质,体会它们的广泛应用.

4.帮助学生不断发现、梳理和体验本章蕴含着的丰富的数学思想方法,设计适当的训练,进一步感受“观察、试验、归纳、猜想、证明”的方法和模型化思想,函数与方程、转化与化归、分类讨论等数学思想,体验叠加、累乘、迭代、倒序相加、乘以公比错位相减等具体方法.

本章注意问题:

(1)多结合实例,通过实例去理解数列的有关概念.数列与函数密切相关,多角度比较两者之间的异同,加深对两方面内容的理解.在解题或复习时,应自觉地运用函数的思想方法去思考和解决数列问题,特别是对等差数列或等比数列的问题.运用函数思想方法以及利用它所得到的许多结论,不仅可以深化对数列知识的理解,而且可使这类问题的解答更为快速、合理.

(2)善于对比学习.学习等差数列后,再学等比数列时,可以把等差数列作为模型,从等差数列研究过的问题入手,再探求出等比数列的相应问题,两相对照,可以发现,在这两种数列的定义、一般形式、通项形式、中项及性质中,用了一些相类似的语句和公式形式,但内容却不相同,之所以有这样的区别,原因在于“差”与“比”不同.通过对比学习,加深了对两种特殊数列本质的理解,会收到事半功倍的效果.

(3)要重视数学思想方法的指导作用.本章蕴含丰富的数学观点、数学思想和方法,学习时应给予充分注意,解题时多考虑与之相联系的数学思想方法.

教案是教师的教学设计和设想,希望这篇高一数学:数列的概念学案可以有助于您备课!更多相关信息请关注威廉希尔app 高一数学教案频道!

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

威廉希尔app 高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。