编辑:
2014-07-08
2.对定义的认识(板书)
(1)的首项不为0;
(2)的每一项都不为0,即 ;
问题:一个数列各项均不为0是这个数列为的什么条件?
(3)公比不为0.
用数学式子表示的定义.
是 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是 ?为什么不能?
式子 给出了数列第 项与第 项的数量关系,但能否确定一个?(不能)确定一个需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.
3.的通项公式(板书)
问题:用 和 表示第 项 .
①不完全归纳法
.
②叠乘法
,… , ,这 个式子相乘得 ,所以 .
(板书)(1)的通项公式
得出通项公式后,让学生思考如何认识通项公式.
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.
三、小结
1.本节课研究了的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用.
标签:高一数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。