您当前所在位置:首页 > 高中 > 教案 > 高一数学教案

高一年级数学函数教案

编辑:sx_chenj

2014-05-14

高一年级数学函数教案

数学函数教案教学目标

1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.

(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.

(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.

(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.

2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.

(1)对函数记号 有正确的理解,准确把握其含义,了解 ( 为常数)与 的区别与联系;

(2)在求函数定义域中注意运算的合理性与简洁性.

3.通过函数定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.

教学建议

1.教材分析

(1)知识结构

(2)重点难点分析

本小节的重点是在映射的基础上理解函数的概念.,主要包括对函数的定义,表示法,三要素的作用的理解与认识.教学难点是函数的定义和函数符号的认识与使用.

①由于学生在初中已学习了函数的变量观点下的定义,并具体研究了几类最简单的函数,对函数并不陌生,所以在高中重新定义函数时,重要的是让学生认识到它的优越性,它从根本上揭示了函数的本质,由定义域,值域,对应法则三要素构成的整体,让学生能主动将函数与函数解析式区分开来.对这一点的认识对于后面函数的性质的研究都有很大的帮助.

②在本节中首次引入了抽象的函数符号 ,学生往往只接受具体的函数解析式,而不能接受,所以应让学生从符号的含义认识开始,在符号中, 在法则 下对应 ,不是 与 的乘积,符号本身就是三要素的体现.由于 所代表的对应法则不一定能用解析式表示,故函数表示的方法除了解析法以外,还有列表法和图象法.此外 本身还指明了谁是谁的函数,有利于我们分清函数解析式中的常量与变量.如 ,它应表示以 为自变量的二次函数,而如果写成 ,则我们就不能准确了解谁是变量,谁是常量,当 为变量时,它就不代表二次函数.

2.教法建议

(1)高中对函数内容的学习是初中函数内容的深化和延伸.深化首先体现在函数的定义更具一般性.故教学中可以让学生举出自己熟悉的函数例子,并用变量观点加以解释,教师再给出如: 是不是函数的问题,用变量定义解释显得很勉强,而如果从集合与映射的观点来解释就十分自然,所以有重新认识函数的必要.

(2)对函数是三要素构成的整体的认识,一方面可以通过对符号 的了解与使用来强化,另一方面也可通过判断两个函数是否相同来配合.在这类题目中,可以进一步体现出三要素整体的作用.

(3)关于对分段函数的认识,首先它的出现是一种需要,可以给出一些实际的例子来说明这一点,对自变量不同取值,用不同的解析式表示同一个函数关系,所以是一个函数而不是几个函数,其次还可以举一些数学的例子如 这样的函数,若利用绝对值的定义它就可以写成 ,这就是一个分段函数,从这个题中也可以看出分段函数是一个函数.

相关推荐

高一数学直线的斜率教案 

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。

威廉希尔app 高中教案频道为考生提供最新最权威的高一数学教案大全、高一数学教案指导、数学教案素材以及数学教案模板等相关教案考试内容。