您当前所在位置:首页 > 高中 > 高中数学学习 > 学习方法

几何中求参数取值范围的数学方法

编辑:

2013-05-02

二、利用判别式构造不等式

在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.

例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )

A [-12 ,12 ] B [-2,2] C [-1,1] D [-4,4]

分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0

解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)

由 得 k2x2+(4k2-8)x+4k2 = 0

∵直线L与抛物线有公共点

∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)

例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.

分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.

解:由 得 (k2-2)x2 +2kx+2 = 0

∵直线与双曲线的右支交于不同两点,则

解得 -2<-2< p>

三、利用点与圆锥曲线的位置关系构造不等式

曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。故可用这些关系来构造不等式解题.

例6已知椭圆2x2 + y2 = a2 (a>0)与连结两点A(1,2)、B(2,3)的线段没有公共点,求实数a的取值范围.

分析:结合点A,B及椭圆位置,可得当AB两点同时在椭圆内或同时在椭圆外时符合条件.

解:依题意可知,当A、B同时在椭圆内或椭圆外时满足条件。

当A、B同时在椭圆内,则

解得a >17

当A、B同时在椭圆外,则

解得0<6< p>

综上所述,解得0<6 或a>17

例7若抛物线y2=4mx (m≠0)的焦点在圆(x-2m)2+(y-1)2=4的内部,求实数m的取值范围.

分析:由于焦点(m,0)在圆内部,则把(m,0)代入可得.

解:∵抛物线的焦点F(m,0)在圆的内部,

∴(m-2m)2+(0-1)2<4 即m2<3

又∵m≠0

∴-3 <0或0<3< p>

四、利用三角函数的有界性构造不等式

曲线的参数方程与三角函数有关,因而可利用把曲线方程转化为含有三角函数的方程,后利用三角函数的有界性构造不等式求解。

例8 若椭圆x2+4(y-a)2 = 4与抛物线x2=2y有公共点,

求实数a的取值范围.

分析: 利用椭圆的参数方程及抛物线方程,得到实数a与参数θ的关系,再利用三角函数的有界性确定a的取值情况.

解:设椭圆的参数方程为 (θ为参数)

代入x2=2y 得

4cos2θ= 2(a+sinθ)

标签:学习方法

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。