编辑:
2012-11-26
2.(08福建)如图、椭圆-+-=1(a>b>0)的一个焦点是F(1,0),O为坐标原点。
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,都有|OA|2+|OB|2<|AB|2,
求a的取值范围。
本题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.
解法一:(Ⅰ)设M,N为短轴的两个三等分点,
因为△MNF为正三角形,所以|OF|=-|MN|,
即1=-·■,解得b=-
a2=b2+1=4,因此,椭圆方程为-+-=1.
(Ⅱ)设A(x1,y1),B(x2,y2).
(ⅰ)当直线 AB与x轴重合时,
|OA|2+|OB|2=2a2,|AB|2=4a2(a2>1),因此,恒有|OA|2+|OB|2<|AB|2
(ⅱ)当直线AB不与x轴重合时,
设直线AB的方程为:x=my+1,代入-+-=1,
整理得(a2+b2m2)y2+2b2my+b2-a2b2=0,
所以y1+y2=-,y1y2=-
因为恒有|OA|2+|OB|2<|AB|2,所以∠AOB恒为钝角。
即OA·OB=(x1,y1)·(x2,y2)=x1x2+y1y2<0恒成立。
x1x2+y1y2=(my1+1)(my2+1)+y1y2=(m2+1)y1y2+m(y1+y2)+1=---+1=-<0
又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对m∈R恒成立,即a2b2m2>a2-a2b2+b2对m∈R恒成立。
当m∈R时,a2b2m2最小值为0,所以a2-a2b2+b2<0.
a2
因为a>0,b>0,所以a0,
解得a>-或a<-(舍去),即a>-,
综合(i)(ii),a的取值范围为(-,+∞).
以上就是威廉希尔app 为大家提供的“高考数学冲刺提分技巧”希望能对考生产生帮助,更多资料请咨询威廉希尔app 中考频道。
标签:学习方法
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。