编辑:
2012-08-27
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
解:原函数化为 -2x+1 (x≤1)
y= 3 (-1
2x-1(x>2)
它的图象如图所示。
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。利用函数的图象
求函数的值域,体现数形结合的思想。是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则
x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共
线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
函数的值域为{z|z≥1}.
点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
解:易求得原函数的反函数为y=log3[x/(1-x)],
由对数函数的定义知 x/(1-x)>0
1-x≠0
解得,0
∴函数的值域(0,1)。
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。
以下供练习选用:求下列函数的值域
1.Y=√(15-4x)+2x-5;({y|y≤3})
2.Y=2x/(2x-1)。 (y>1或y<0)
标签:学习方法
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。