您当前所在位置:首页 > 高中 > 高中数学学习 > 数学家

数学家:外尔斯特拉斯的故事

编辑:

2013-04-09

外耳斯特拉斯还告诉我们,直观有时是靠不住甚至是完全错误的。从前人们直观上一直认为连续曲线肯定是光滑的,或者大多数点都是光滑的。用在函数上,就是一直认为连续函数是可导的,或者在多数点是可导的。可是外尔斯特拉斯却举出一个反例,在每一个点都连续,却有在任何点都不可导。他举出这个函数是画不出图像的,当时作为一个中学教师,的确令数学家们大跌了眼镜。

1851年,大数学家高斯最得意的弟子黎曼,在博士论文中提出了一个原理:狄利赫来(Dirichlet)原理,利用这个‘原理',可以美妙的解决变分中提出的一系列问题,并且在数学物理上有着广泛的应用。按照微积分理论,狄利赫来原理应该算是理所当然成立的。可是外尔斯特拉斯却说:"不加证明的使用狄利赫来原理,是不严格的。"黎曼也是很谦虚的,便回应到:"您说的对,不过这个原理肯定是正确的,很快我就会证明出来。"但是黎曼直到去世也没有证明出来,又是这个中学教师,举出了一个反例,彻底推翻了狄利赫来原理。于是黎曼博士论文中的一切结果都是值得怀疑的了。因此数学家卡尔.诺依曼叹息道:"如此美妙而又有广泛应用前景的原理,已经永远从我们视野中消失了。"

1899年,旷世奇才希尔伯特(Hilbert)用了不到6页纸,通过附加一个条件,就消除了黎曼理论的缺陷,从而挽救了这个原理。更神奇的是,还挽救了黎曼的名声,因为用这个改造的原理发现黎曼所得的其它结果又都是正确的了。

这真是群星闪耀的年代,是数学家自由飞翔的年代。可惜一去不复返了。

【总结】2013年威廉希尔app 为小编在此为您收集了此文章“数学家:外尔斯特拉斯的故事”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在威廉希尔app 学习愉快!

更多精彩内容请点击:高中 > 高中数学学习 > 数学家

标签:数学家

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。