编辑:sx_xingt
2013-03-27
【摘要】鉴于大家对威廉希尔app 十分关注,小编在此为大家整理了此文“高中数学公式:数学积化和差公式”,供大家参考!
本文题目:高中数学公式:数学积化和差公式
积化和差,指初等数学三角函数部分的一组恒等式。
公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
证明
法1
积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。
即只需要把等式右边用两角和差公式拆开就能证明:
sinαsinβ=-1/2[-2sinαsinβ]
=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]
=-1/2[cos(α+β)-cos(α-β)]
其他的3个式子也是相同的证明方法。
(该证明法逆向推导可用于和差化积的计算,参见和差化积)
法2
根据欧拉公式,e^ix=cosx+isinx
令x=a+b
得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
记忆方法
积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。
【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是
[-2,2],而积的值域确是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:
cos(α-β)-cos(α+β)
=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)
=2sinαsinβ
故最后需要除以2。
【总结】2013年威廉希尔app 为小编在此为您收集了此文章“高中数学公式:数学积化和差公式”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在威廉希尔app 学习愉快!
更多频道:
标签:高中数学公式
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。