编辑:sx_xingt
2013-03-27
【摘要】鉴于大家对威廉希尔app 十分关注,小编在此为大家整理了此文“高中数学公式:数学韦达定理公式”,供大家参考!
本文题目:高中数学公式:数学韦达定理公式
韦达定理公式:
一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
…
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积。
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
定理的证明
设x_1,x_2是一元二次方程ax^2+bx+c=0的两个解,且不妨令x_1 ge x_2。根据求根公式,有
x_1=frac{-b + sqrt {b^2-4ac}},x_2=frac{-b - sqrt {b^2-4ac}}
所以
x_1+x_2=frac{-b + sqrt {b^2-4ac} + left (-b ight) - sqrt {b^2-4ac}} =-frac,
x_1x_2=frac{ left (-b + sqrt {b^2-4ac} ight) left (-b - sqrt {b^2-4ac} ight)}{left (2a ight)^2} =frac
【总结】2013年威廉希尔app 为小编在此为您收集了此文章“高中数学公式:数学韦达定理公式”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在威廉希尔app 学习愉快!
更多频道:
标签:高中数学公式
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。