编辑:
2014-06-06
能非常熟悉地写出基本初等函数的所有性质,通过举反例证明函数不具有奇偶性,利用函数的奇偶性做出函数的图像;利用配方法、单调性和基本不等式等方法求函数的最值,特别要掌握二次函数在闭区间的最值问题;关于零点可通过二分法找到根所在区域,用函数图像确定零点个数。解决函数问题时,重在分析问题的条件和结论,看能否用函数有关概念解释并转化求解。
3.会作出一次函数、二次函数和反比例函数以及幂、指对数函数的图像,结合图像理解函数的性质,并在实际问题中会用初等函数的性质解决问题,利用指数函数和对数函数互为反函数的关系。
4.指、对数运算(指数式与对数式互化)和指、对数方程的求解。(对数方程的验根问题)
5.研究性问题:
近几年高考和调研卷中出现学习型问题,如下列问题:f(x+T)=Tf(x),f(-x)=af(x)+b,实际上是函数性质的拓展,试题来源分别是函数的周期性和函数的奇偶性,常为压轴题,命题一般从特殊入手,如f(x+T)=Tf(x),问题1:函数f(x)=x是否满足上述性质?即x+T=Tx对x∈R是否成立?只需取x=0即可否定。考生在处理这类问题时,要与学过的函数性质联系,也可借助图像入手。
6.数学思想:
(1)在解决函数问题时,有时需要结合函数的图像(不代替证明);分类讨论时要确定分类标准,遵循不重不漏的原则。
(2)函数方程思想可解决下列问题:①方程有解可通过变量分离转化为求函数值域;②方程的根的个数可化归为两个函数的图像的交点个数。
(3)恒成立问题:通过变量分离或转化为一元函数,转化为求函数的最值问题。
(4)通过取对数实现乘法运算转化为加法运算,化复杂的运算为简单的运算;作图时,要了解指数函数、幂函数和线性函数增长的快慢(如方程x2=2x的解的个数问题)。
2014年高中数学考查重点难点 函数就为您介绍完了,威廉希尔app 的编辑将第一时间为您整理信息,供大家参考!
相关推荐
标签:高中数学必修
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。