编辑:sx_yangk
2014-09-29
高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了14年高一必修数学同步训练题,希望对大家有帮助。
6.用符号“∈”或“∉”填空
(1)22________R,22________{x|x<7};
(2)3________{x|x=n2+1,n∈N+};
(3)(1,1)________{y|y=x2};
(1,1)________{(x,y)|y=x2}.
【解析】 (1)22∈R,而22=8>7,
∴22∉{x|x<7}.
(2)∵n2+1=3,
∴n=±2∉N+,
∴3∉{x|x=n2+1,n∈N+}.
(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,
故(1,1)∉{y|y=x2}.
集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,
∴(1,1)∈{(x,y)|y=x2}.
【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈
7.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________.
【解析】 由题意知3-x=±1,±2,±3,±6,
∴x=0,-3,1,2,4,5,6,9.
又∵x∈N*,
∴C={1,2,4,5,6,9}.
【答案】 {1,2,4,5,6,9}
8.已知集合A={-2,4,x2-x},若6∈A,则x=________.
【解析】 由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.
【答案】 -2或3
三、解答题
9.选择适当的方法表示下列集合:
(1)绝对值不大于3的整数组成的集合;
(2)方程(3x-5)(x+2)=0的实数解组成的集合;
(3)一次函数y=x+6图像上所有点组成的集合.
【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};
(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};
(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.
10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.
【解】 由-3∈A,得a-2=-3或2a2+5a=-3.
(1)若a-2=-3,则a=-1,
当a=-1时,2a2+5a=-3,
∴a=-1不符合题意.
(2)若2a2+5a=-3,则a=-1或-32.
当a=-32时,a-2=-72,符合题意;
当a=-1时,由(1)知,不符合题意.
综上可知,实数a的值为-32.
威廉希尔app 小编为大家整理了14年高一必修数学同步训练题,希望对大家有所帮助。
标签:高一数学专项练习
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。