您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学专项练习

高一数学奇偶性练习附解析

编辑:sx_chenj

2014-04-19

高一数学奇偶性练习附解析

1.下列命题中,真命题是(  )

A.函数y=1x是奇函数,且在定义域内为减函数

B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数

C.函数y=x2是偶函数,且在(-3,0)上为减函数

D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数

解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac≠0)在(0,2)上为减函数,故选C.

2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为(  )

A.10          B.-10

C.-15  D.15

解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

3.f(x)=x3+1x的图象关于(  )

A.原点对称   B.y轴对称

C.y=x对称   D.y=-x对称

解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.

4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.

解析:∵f(x)是[3-a,5]上的奇函数,

∴区间[3-a,5]关于原点对称,

∴3-a=-5,a=8.

答案:8

1.函数f(x)=x的奇偶性为(  )

A.奇函数         B.偶函数

C.既是奇函数又是偶函数  D.非奇非偶函数

解析:选D.定义域为{x|x≥0},不关于原点对称.

2.下列函数为偶函数的是(  )

A.f(x)=|x|+x   B.f(x)=x2+1x

C.f(x)=x2+x   D.f(x)=|x|x2

解析:选D.只有D符合偶函数定义.

3.设f(x)是R上的任意函数,则下列叙述正确的是(  )

A.f(x)f(-x)是奇函数

B.f(x)|f(-x)|是奇函数

C.f(x)-f(-x)是偶函数

D.f(x)+f(-x)是偶函数

解析:选D.设F(x)=f(x)f(-x)

则F(-x)=F(x)为偶函数.

设G(x)=f(x)|f(-x)|,

则G(-x)=f(-x)|f(x)|.

∴G(x)与G(-x)关系不定.

设M(x)=f(x)-f(-x),

∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.

设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).

N(x)为偶函数.

4.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx(  )

A.是奇函数

B.是偶函数

C.既是奇函数又是偶函数

D.是非奇非偶函数

高一数学奇偶性练习解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x•f(-x)=-x•f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.

相关推荐

高一数学生活中的变量关系练习题  

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。