您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学专项练习

高一数学专项练习:奇偶性训练题

编辑:

2014-03-14

5.奇函数y=f(x)(x∈R)的图象必过点(  )

A.(a,f(-a))   B.(-a,f(a))

C.(-a,-f(a))   D.(a,f(1a))

解析:选C.∵f(x)是奇函数,

∴f(-a)=-f(a),

即自变量取-a时,函数值为-f(a),

故图象必过点(-a,-f(a)).

6.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时(  )

A.f(x)≤2   B.f(x)≥2

C.f(x)≤-2   D.f(x)∈R

解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________.

解析:f(x)=x2+(1-a)x-a为偶函数,

∴1-a=0,a=1.

答案:1

8.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x∈R)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.

解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.

答案:③④

9.①f(x)=x2(x2+2);②f(x)=x|x|;

③f(x)=3x+x;④f(x)=1-x2x.

以上函数中的奇函数是________.

解析:(1)∵x∈R,∴-x∈R,

又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),

∴f(x)为偶函数.

(2)∵x∈R,∴-x∈R,

又∵f(-x)=-x|-x|=-x|x|=-f(x),

∴f(x)为奇函数.

(3)∵定义域为[0,+∞),不关于原点对称,

∴f(x)为非奇非偶函数.

(4)f(x)的定义域为[-1,0)∪(0,1]

即有-1≤x≤1且x≠0,则-1≤-x≤1且-x≠0,

又∵f(-x)=1--x2-x=-1-x2x=-f(x).

∴f(x)为奇函数.

答案:②④

10.判断下列函数的奇偶性:

(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+x  x<0-x2+x x>0.

解:(1)由1+x1-x≥0,得定义域为[-1,1),关于原点不对称,∴f(x)为非奇非偶函数.

(2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),

当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),

综上所述,对任意的x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x),

∴f(x)为奇函数.

11.判断函数f(x)=1-x2|x+2|-2的奇偶性.

解:由1-x2≥0得-1≤x≤1.

由|x+2|-2≠0得x≠0且x≠-4.

∴定义域为[-1,0)∪(0,1],关于原点对称.

∵x∈[-1,0)∪(0,1]时,x+2>0,

∴f(x)=1-x2|x+2|-2=1-x2x,

∴f(-x)=1--x2-x=-1-x2x=-f(x),

∴f(x)=1-x2|x+2|-2是奇函数.

12.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.试判断f(x)的奇偶性.

解:在f(x+y)=f(x)+f(y)中,令x=y=0,

得f(0+0)=f(0)+f(0),

∴f(0)=0.

再令y=-x,则f(x-x)=f(x)+f(-x),

即f(x)+f(-x)=0,

∴f(-x)=-f(x),故f(x)为奇函数.

相关推荐:

高一数学专项练习:对数函数及其性质测试题  

高一数学同步练习题:指数与指数幂的运算训练题  

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。