您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学专项练习

高一数学专项练习:对数函数及其性质测试题

编辑:

2014-03-12

4.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为(  )

A.14  B.12

C.2  D.4

解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;

当0

loga2=-1,a=12.

5.函数f(x)=loga[(a-1)x+1]在定义域上(  )

A.是增函数  B.是减函数

C.先增后减  D.先减后增

解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0

∴f(x)=loga[(a-1)x+1]为增函数.

6.(2009年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则(  )

A.a>b>c  B.a>c>b

C.c>a>b  D.c>b>a

解析:选B.∵1

∴0

∵0

又c-b=12lg e-(lg e)2=12lg e(1-2lg e)

=12lg e•lg10e2>0,∴c>b,故选B.

7.已知0

解析:∵0

又∵0

答案:3

8.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.

解析:由图象关于原点对称可知函数为奇函数,

所以f(-x)+f(x)=0,即

log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,

所以1-x2a2-x2=1⇒a=1(负根舍去).

答案:1

9.函数y=logax在[2,+∞)上恒有|y|>1,则a取值范围是________.

解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴1

答案:12

10.已知f(x)=6-ax-4ax<1logax  x≥1是R上的增函数,求a的取值范围.

解:f(x)是R上的增函数,

则当x≥1时,y=logax是增函数,

∴a>1.

又当x<1时,函数y=(6-a)x-4a是增函数.

∴6-a>0,∴a<6.

又(6-a)×1-4a≤loga1,得a≥65.

∴65≤a<6.

综上所述,65≤a<6.

11.解下列不等式.

(1)log2(2x+3)>log2(5x-6);

(2)logx12>1.

解:(1)原不等式等价于2x+3>05x-6>02x+3>5x-6,

解得65

所以原不等式的解集为(65,3).

(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0

⇔log2x+1log2x<0⇔-1

⇔2-1

∴原不等式的解集为(12,1).

12.函数f(x)=log12(3x2-ax+5)在[-1,+∞)上是减函数,求实数a的取值范围.

解:令t=3x2-ax+5,则y=log12t在[-1,+∞)上单调递减,故t=3x2-ax+5在[-1,+∞)单调递增,且t>0(即当x=-1时t>0).

因为t=3x2-ax+5的对称轴为x=a6,所以a6≤-18+a>0⇒a≤-6a>-8⇒-8

相关推荐:

高一数学练习:高一数学第一章综合检测填空题二 

高一数学练习:高一数学第一章综合检测填空题一

 

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。