编辑:haoyy
2014-08-06
以下是威廉希尔app 为大家整理的关于《高一数学必修1知识点:基本初等函数》的文章,供大家学习参考!
基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).
当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。
注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
,
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
a>1
0
图象特征
函数性质
向x、y轴正负方向无限延伸
函数的定义域为R
图象关于原点和y轴不对称
非奇非偶函数
函数图象都在x轴上方
函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
(4)当 时,若 ,则 ;
二、对数函数
(一)对数
1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:1 注意底数的限制 ,且 ;
2 ;
3 注意对数的书写格式.
两个重要对数:
1 常用对数:以10为底的对数 ;
2 自然对数:以无理数 为底的对数的对数 .
对数式与指数式的互化
对数式 指数式
对数底数 ← → 幂底数
对数 ← → 指数
真数 ← → 幂
(二)对数的运算性质
如果 ,且 , , ,那么:
1 · + ;
2 - ;
3 .
注意:换底公式
( ,且 ; ,且 ; ).
利用换底公式推导下面的结论(1) ;(2) .
(二)对数函数
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).
注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如: , 都不是对数函数,而只能称其为对数型函数.
2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>1
0
图象特征
函数性质
函数图象都在y轴右侧
函数的定义域为(0,+∞)
图象关于原点和y轴不对称
非奇非偶函数
向y轴正负方向无限延伸
函数的值域为R
函数图象都过定点(1,0)
自左向右看,
图象逐渐上升
自左向右看,
图象逐渐下降
增函数
减函数
第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0
(三)幂函数
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第三章 函数的应用
一、方程的根与函数的零点
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
求函数 的零点:
1 (代数法)求方程 的实数根;
2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数 .
1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
标签:高一数学知识点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。