编辑:
2014-06-12
在考虑到自然数的序结构后,我们就可以给“自然数的个数是正偶数的个数的两倍”这种直觉一个合理的解释了。考虑小于100的正偶数,一共有49个,所以占小于100的自然数的49/99,接近1/2;如果把“小于100”改成“小于1000”,那么结果是499/999,更接近1/2了;把上面的100和1000换成越来越大的数字,我们会发现正偶数所占的比例会越来越接近1/2。这就提示我们可以采用这样一种关于自然数的子集的大小的定义:如果A是自然数的一个子集,令p(n)为A中小于n的元素的个数,我们称limn→∞p(n)/n(就是当n趋向无穷大时,p(n)/n的极限)为A相对于自然数集合的大小。在这个定义下,正偶数集合相对于自然数集合的大小就是1/2。按照这样的定义,素数集合相对于自然数集合的大小是0,这也就是所谓的“几乎所有的自然数都不是素数”。用上面这个方法还可以比较两个自然数集合的子集的相对大小,具体方法就由读者自己来思考了。
如果没有自然数序结构这个“背景”,我们就只能够使用一一对应的方法来讨论集合的基数,那种“自然数的个数是正偶数的个数的两倍”的直觉只是一种错觉。比如说考虑下面平面图上,所有(2n,n)这样的点所组成的集合(其中n是自然数)。如果站在x轴的角度来看,我们发现每隔一列就有一个点,而列数显然和自然数一样多,所以点数就该和正偶数一样多;如果站在y轴的角度来看,我们发现每行都有一个点,而行数也和自然数一样多,所以点数就该和自然数一样多。按照集合基数的观点,自然数和正偶数一样多,上面这种情况完全不造成矛盾,但是“直觉”所给予的一会儿“一样多”一会儿“两倍”的印象,就没有太大的意义了(最多得到“两倍的无穷大等于无穷大”这种我们按照一一对应原则早已熟知,而且解释得更好的观点)。
除了序结构外,还有其他的数学结构。法国著名的布尔巴基学派就认为数学基于三种母结构:序结构、代数结构和拓扑结构,各种数学结构可以混杂在一起得出不同的数学对象,比如说实数集上有比较大小的序结构,还有由算术运算(加和乘,减和除是它们的逆运算)定义的代数结构,以及由极限理论(它规定了某些点必须在另一些点的“附近”)定义的拓扑结构。布尔巴基学派试图用结构主义的观点来统一数学,出版了著名的《数学原理》。结构主义的观点大致来说,就是数学结构决定数学对象。两个分别定义在两个不同集合上的数学对象,如果它们的数学结构相同,那么即使集合中的元素很不相同,它们其实也是同一个数学对象。在数学中我们有时会碰到“同构”这个词,就是指在某种一一映射下,两个数学对象的数学结构相同。
举一个简单的例子。中学里我们学过复数和它的几何表示法,知道每个复数都可以对应到直角坐标平面上的一个点,而复数的加法和乘法也都有各自的几何意义。在这里,一个复数是a+bi这样的一对数,还是平面上的一个点(a,b)并不是关键,尽管一对数和一个点是完全不同的两样东西,只要在实数对集合和平面点集上面由加法和乘法决定代数结构是相同的,它们都可称作是复数,是同一个数学对象。相反地,如果我们在平面上定义另一种乘法为(a1, b1)*(a2, b2)=((a1*a2, b1*b2),那么尽管平面上的点仍旧是那些,但是因为在上面所定义的数学结构变了,于是就完全是两种不同的数学对象了。
象上面这样的例子中数学结构的相同当然很直观,而有一些此类问题则牵涉到极其深刻的数学理论,比如说著名的庞加莱猜想(新千年的七大数学问题之一,价值百万美金:-))就是问,是否任意闭单连通3维流形都同胚于3维球,换句话说,是否给定了“闭单连通”这个条件,在3维流形上就只能有一种拓扑结构,也就是3维球的拓扑结构?另外,证明两个原来似乎没有关系的数学对象的数学结构其实是相同的,意义非常重大,这样的定理是连通两个数学领域的桥梁。这意味着这两个数学对象其实是同一种东西,对于其中一个数学对象成立的理论,可以立刻应用在另一个上面;以往用来研究一种数学对象的方法,就可以被用来研究另一类数学对象。本文开头说到英国数学家怀尔斯证明了费尔马大定理,他证明的其实是更一般的“谷山-志村猜想”。这个猜想就是此类意义重大的命题,它沟通了两个数学领域:椭圆曲线和模形式。它的证明被称为是“人类智慧的凯歌”。
最后举个搞笑的例子。网上有人发现了下面两张图片,左边是变形金刚的电影招贴,右边是蓝猫的广告,构成画面的元素不同,一个是机器人,一个是蓝猫和它的朋友,但是摆的“甫士”和画面结构却相同,也算是个不光彩的“同构”例子吧。
“一个平面上的点应该比一条直线上的点的个数多”这样的直觉也可以用附加的数学结构来解释合理性。当我们想像直线或平面上的点时,我们不但想像了那些点集,同时也在想像着这些点集构成的直线和平面,于是它们就再不是那些集合中散乱的点了,它们的排列非常有规律。换句话说,我们在点集上增加了决定直线和平面的数学结构。如果我们把直线和平面看作是实数域上的线性空间(关于线性空间的理论是线性代数,所有理科的学生会在大学一年级学习),我们就遇见了一些数学结构:首先我们需要一个实数域,上面有一个域的代数结构,其次我们在直线和平面的点集上定义了一个交换群的代数结构,最后在实数域和交换群上定义了称作“数乘”的代数结构,这个代数结构同域和交换群上的各种运算都兼容,这样我们最终得到了这个被称为“实数域上的线性空间”的代数结构。上面这一串话也许有点复杂,但是中心思想就是上面所说的结构主义的思想:数学对象是由各种数学结构混杂在一起(当然要合理地混杂在一起,上面所说的“兼容”就是这个意思)而得到的。一旦我们这样规定了线性空间的结构,我们就可以定义线性空间的维数,这时我们可以说,两维的线性空间(平面)在这种意义下要比一维的线性空间(直线)大。
从上面两个例子我们看到,当集合中的元素只是被看做一个没有任何数学结构的集合中散乱的元素时,我们只能用一一对应的方法来比较集合的大小;而当丰富多彩的数学结构被加在集合上时,我们才有可能用更精细和更符合直觉的手段来定义不同的比较(附加有数学结构的)集合大小的方法。
以上就是威廉希尔app 的编辑为您准备的高一数学知识讲解:集合大小定义的基本要求
相关推荐
标签:高一数学知识点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。