您当前所在位置:首页 > 高中 > 高一 > 高一数学 > 高一数学教案

高一数学教案:第一单元数学三角函数教案

编辑:sx_xingt

2013-03-12

【摘要】鉴于大家对威廉希尔app 十分关注,小编在此为大家整理了此文“高一数学教案:第一单元数学三角函数教案”,供大家参考!

本文题目:高一数学教案:第一单元数学三角函数教案

第二十四教时

教材:倍角公式,推导“和差化积”及“积化和差”公式

目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

过程:

一、 复习倍角公式、半角公式和万能公式的推导过程:

例一、 已知 , ,tan = ,tan = ,求2 + 

(《教学与测试》P115 例三)

解: ∴

又∵tan2 < 0,tan < 0 ∴ ,

∴ ∴2 +  =

例二、 已知sin  cos = , ,求 和tan的值

解:∵sin  cos = ∴

化简得: ∴

∵ ∴ ∴ 即

二、 积化和差公式的推导

sin( + ) + sin(  ) = 2sincos  sincos = [sin( + ) + sin(  )]

sin( + )  sin(  ) = 2cossin  cossin = [sin( + )  sin(  )]

cos( + ) + cos(  ) = 2coscos  coscos = [cos( + ) + cos(  )]

cos( + )  cos(  ) =  2sinsin  sinsin =  [cos( + )  cos(  )]

这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将“积式”化为“和差”,有利于简化计算。(在告知公式前提下)

例三、 求证:sin3sin3 + cos3cos3 = cos32

证:左边 = (sin3sin)sin2 + (cos3cos)cos2

=  (cos4  cos2)sin2 + (cos4 + cos2)cos2

=  cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

= cos4cos2 + cos2 = cos2(cos4 + 1)

= cos22cos22 = cos32 = 右边

∴原式得证

三、 和差化积公式的推导

若令 +  = ,   = φ,则 , 代入得:

这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

例四、 已知cos  cos  = ,sin  sin = ,求sin( + )的值

解:∵cos  cos  = ,∴ ①

sin  sin  = ,∴ ②

∵ ∴ ∴

四、 小结:和差化积,积化和差

五、 作业:《课课练》P36—37 例题推荐 1—3

P38—39 例题推荐 1—3

P40 例题推荐 1—3

【总结】2013年已经到来,新的一年威廉希尔app 会为您整理更多更好的文章,希望本文“高一数学教案:第一单元数学三角函数教案”能给您带来帮助!下面请看更多频道:

更多频道:

高中频道      高中英语学习

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。