编辑:sx_xingt
2013-03-11
【摘要】鉴于大家对威廉希尔app 十分关注,小编在此为大家整理了此文“高一数学教案:对数函数的性质及简单应用”,供大家参考!
本文题目:高一数学教案:对数函数的性质及简单应用
2.2.2对数函数的性质及简单应用
一、内容与解析
(一)内容:对数函数的性质
(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.教学的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、教学目标及解析
(一)教学目标:
1.掌握对数函数的性质并能简单应用
(二)解析:
(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().
五、教学过程
问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。
设计意图:
师生活动(小问题):
1.这些对数函数的解析式有什么共同特征?
2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质
4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?
问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。
问题3.根据问题1、2填写下表
图象特征 函数性质
a>1 01 0
向y轴正负方向无限延伸 函数的值域为R+
图象关于原点和y轴不对称 非奇非偶函数
函数图象都在y轴右侧 函数的定义域为R
函数图象都过定点(1,0)
自左向右,图象逐渐上升 自左向右,图象逐渐下降 增函数 减函数
在第一象限内的图象纵坐标都大于0,横坐标大于1 在第一象限内的图象纵坐标都大于0,横标大于0小于1
在第四象限内的图象纵坐标都小于0,横标大于0小于1 在第四象限内的图象纵坐标都小于0,横标大于1
[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成
例1.比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108 ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若 且 ,求 的取值范围
(2)已知 ,求 的取值范围;
六、目标检测
1.比较 , , 的大小:
2.求下列各式中的x的值
(1)
(2)
(3)
【总结】2013年已经到来,新的一年威廉希尔app 会为您整理更多更好的文章,希望本文“高一数学教案:对数函数的性质及简单应用”能给您带来帮助!下面请看更多频道:
更多频道:
标签:高一数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。